SAE: added new archi 'vg'

This commit is contained in:
iperov 2019-02-21 17:53:59 +04:00
parent d66829aae4
commit f0a20b46d3
5 changed files with 378 additions and 119 deletions

View file

@ -305,20 +305,98 @@ def get_transform_mat (image_landmarks, output_size, scale=1.0):
# alignments.append (dflimg.get_source_landmarks())
import mathlib
def main():
def f ( *args, asd=True, **kwargs ):
import code
code.interact(local=dict(globals(), **locals()))
f( 1, asd=True, bg=0)
from nnlib import nnlib
exec( nnlib.import_all(), locals(), globals() )
exec( nnlib.import_all( device_config=nnlib.device.Config() ), locals(), globals() )
PMLTile = nnlib.PMLTile
PMLK = nnlib.PMLK
image = cv2.imread('D:\\DeepFaceLab\\test\\00000.png').astype(np.float32) / 255.0
image = cv2.resize ( image, (128,128) )
class DSSIMObjective:
"""Computes DSSIM index between img1 and img2.
This function is based on the standard SSIM implementation from:
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004).
"""
image = cv2.cvtColor (image, cv2.COLOR_BGR2GRAY)
image = np.expand_dims (image, -1)
def __init__(self, k1=0.01, k2=0.03, max_value=1.0):
self.__name__ = 'DSSIMObjective'
self.k1 = k1
self.k2 = k2
self.max_value = max_value
self.c1 = (self.k1 * self.max_value) ** 2
self.c2 = (self.k2 * self.max_value) ** 2
self.dim_ordering = K.image_data_format()
self.backend = K.backend()
def __int_shape(self, x):
return K.int_shape(x) if self.backend == 'tensorflow' else K.shape(x)
def __call__(self, y_true, y_pred):
ch = K.shape(y_pred)[-1]
def softmax(x, axis=-1):
y = np.exp(x - np.max(x, axis, keepdims=True))
return y / np.sum(y, axis, keepdims=True)
def _fspecial_gauss(size, sigma):
#Function to mimic the 'fspecial' gaussian MATLAB function.
coords = np.arange(0, size, dtype=K.floatx())
coords -= (size - 1 ) / 2.0
g = coords**2
g *= ( -0.5 / (sigma**2) )
g = np.reshape (g, (1,-1)) + np.reshape(g, (-1,1) )
g = np.reshape (g, (1,-1))
g = softmax(g)
g = K.constant ( np.reshape (g, (size, size, 1, 1)) )
g = K.tile (g, (1,1,ch,1))
return g
kernel = _fspecial_gauss(11,1.5)
def reducer(x):
return K.depthwise_conv2d(x, kernel, strides=(1, 1), padding='valid')
c1 = (self.k1 * self.max_value) ** 2
c2 = (self.k2 * self.max_value) ** 2
mean0 = reducer(y_true)
mean1 = reducer(y_pred)
num0 = mean0 * mean1 * 2.0
den0 = K.square(mean0) + K.square(mean1)
luminance = (num0 + c1) / (den0 + c1)
num1 = reducer(y_true * y_pred) * 2.0
den1 = reducer(K.square(y_true) + K.square(y_pred))
c2 *= 1.0 #compensation factor
cs = (num1 - num0 + c2) / (den1 - den0 + c2)
ssim_val = K.mean(luminance * cs, axis=(-3, -2) )
return K.mean( (1.0 - ssim_val ) / 2.0 )
image = cv2.imread('D:\\DeepFaceLab\\test\\00000.png').astype(np.float32) / 255.0
image = np.expand_dims (image, 0)
image_shape = image.shape
t = K.placeholder ( image_shape ) #K.constant ( np.ones ( (10,) ) )
image2 = cv2.imread('D:\\DeepFaceLab\\test\\00001.png').astype(np.float32) / 255.0
image2 = np.expand_dims (image2, 0)
image2_shape = image2.shape
#image = np.random.uniform ( size=(1,256,256,3) )
#image2 = np.random.uniform ( size=(1,256,256,3) )
t1 = K.placeholder ( (None,) + image_shape[1:], name="t1" )
t2 = K.placeholder ( (None,) + image_shape[1:], name="t2" )
l1_t = DSSIMObjective() (t1,t2 )
l1, = K.function([t1, t2],[l1_t]) ([image, image2])
print (l1)
import code
code.interact(local=dict(globals(), **locals()))
@ -1279,4 +1357,34 @@ O[i0, i1, i2, i3: (1 + 1 - 1)/1, (64 + 1 - 1)/1, (64 + 2 - 1)/2, (1 + 1 - 1)/1]
if __name__ == "__main__":
#os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
#os.environ["PLAIDML_DEVICE_IDS"] = "opencl_nvidia_geforce_gtx_1060_6gb.0"
#import keras
#K = keras.backend
#
#image = np.random.uniform ( size=(1,256,256,3) )
#image2 = np.random.uniform ( size=(1,256,256,3) )
#
#y_true = K.placeholder ( (None,) + image.shape[1:] )
#y_pred = K.placeholder ( (None,) + image2.shape[1:] )
#
#def reducer(x):
# shape = K.shape(x)
# x = K.reshape(x, (-1, shape[-3] , shape[-2], shape[-1]) )
# y = K.depthwise_conv2d(x, K.constant(np.ones( (11,11,3,1) )), strides=(1, 1), padding='valid' )
# y_shape = K.shape(y)
# return K.reshape(y, (shape[0], y_shape[1], y_shape[2], y_shape[3] ) )
#
#mean0 = reducer(y_true)
#mean1 = reducer(y_pred)
#luminance = mean0 * mean1
#cs = y_true * y_pred
#
#result = K.function([y_true, y_pred],[luminance, cs]) ([image, image2])
#
#print (result)
#import code
#code.interact(local=dict(globals(), **locals()))
main()

View file

@ -12,7 +12,7 @@ from utils import image_utils
import cv2
import models
def trainerThread (input_queue, output_queue, training_data_src_dir, training_data_dst_dir, model_path, model_name, save_interval_min=10, debug=False, **in_options):
def trainerThread (input_queue, output_queue, training_data_src_dir, training_data_dst_dir, model_path, model_name, save_interval_min=15, debug=False, **in_options):
while True:
try:
@ -39,10 +39,11 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
**in_options)
is_reached_goal = model.is_reached_epoch_goal()
is_upd_save_time_after_train = False
def model_save():
if not debug and not is_reached_goal:
model.save()
is_upd_save_time_after_train = True
def send_preview():
if not debug:
@ -65,10 +66,14 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
print('Starting. Press "Enter" to stop training and save model.')
last_save_time = time.time()
for i in itertools.count(0,1):
if not debug:
if not is_reached_goal:
loss_string = model.train_one_epoch()
if is_upd_save_time_after_train:
#save resets plaidML programs, so upd last_save_time only after plaidML rebuild them
last_save_time = time.time()
print (loss_string, end='\r')
if model.get_target_epoch() != 0 and model.is_reached_epoch_goal():

View file

@ -327,9 +327,9 @@ class ModelBase(object):
self.epoch += 1
if epoch_time >= 10000:
if epoch_time >= 10:
#............."Saving...
loss_string = "Training [#{0:06d}][{1:.5s}s]".format ( self.epoch, '{:0.4f}'.format(epoch_time / 1000) )
loss_string = "Training [#{0:06d}][{1:.5s}s]".format ( self.epoch, '{:0.4f}'.format(epoch_time) )
else:
loss_string = "Training [#{0:06d}][{1:04d}ms]".format ( self.epoch, int(epoch_time*1000) )
for (loss_name, loss_value) in losses:

View file

@ -30,7 +30,7 @@ class SAEModel(ModelBase):
self.options['resolution'] = input_int("Resolution (64,128 ?:help skip:128) : ", default_resolution, [64,128], help_message="More resolution requires more VRAM.")
self.options['face_type'] = input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="Half face has better resolution, but covers less area of cheeks.").lower()
self.options['learn_mask'] = input_bool ("Learn mask? (y/n, ?:help skip:y) : ", True, help_message="Learning mask can help model to recognize face directions. Learn without mask can reduce model size, in this case converter forced to use 'not predicted mask' that is not smooth as predicted. Model with style values can be learned without mask and produce same quality result.")
self.options['archi'] = input_str ("AE architecture (df, liae, ?:help skip:%s) : " % (default_archi) , default_archi, ['df','liae'], help_message="DF keeps faces more natural, while LIAE can fix overly different face shapes.").lower()
self.options['archi'] = input_str ("AE architecture (df, liae, vg ?:help skip:%s) : " % (default_archi) , default_archi, ['df','liae','vg'], help_message="'df' keeps faces more natural. 'liae' can fix overly different face shapes. 'vg' - currently testing.").lower()
else:
self.options['resolution'] = self.options.get('resolution', default_resolution)
self.options['face_type'] = self.options.get('face_type', default_face_type)
@ -48,9 +48,13 @@ class SAEModel(ModelBase):
if is_first_run:
self.options['lighter_encoder'] = input_bool ("Use lightweight encoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight encoder is 35% faster, requires less VRAM, but sacrificing overall quality.")
if self.options['archi'] != 'vg':
self.options['multiscale_decoder'] = input_bool ("Use multiscale decoder? (y/n, ?:help skip:y) : ", True, help_message="Multiscale decoder helps to get better details.")
else:
self.options['lighter_encoder'] = self.options.get('lighter_encoder', False)
if self.options['archi'] != 'vg':
self.options['multiscale_decoder'] = self.options.get('multiscale_decoder', True)
default_face_style_power = 0.0
@ -74,17 +78,19 @@ class SAEModel(ModelBase):
#override
def onInitialize(self, **in_options):
exec(nnlib.import_all(), locals(), globals())
SAEModel.initialize_nn_functions()
self.set_vram_batch_requirements({1.5:4})
resolution = self.options['resolution']
ae_dims = self.options['ae_dims']
ed_ch_dims = self.options['ed_ch_dims']
adapt_k_size = False
bgr_shape = (resolution, resolution, 3)
mask_shape = (resolution, resolution, 1)
self.ms_count = ms_count = 3 if self.options['multiscale_decoder'] else 1
self.ms_count = ms_count = 3 if (self.options['archi'] != 'vg' and self.options['multiscale_decoder']) else 1
masked_training = True
epoch_alpha = Input( (1,) )
warped_src = Input(bgr_shape)
@ -101,7 +107,7 @@ class SAEModel(ModelBase):
target_dstm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
if self.options['archi'] == 'liae':
self.encoder = modelify(SAEModel.LIAEEncFlow(resolution, adapt_k_size, self.options['lighter_encoder'], ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
self.encoder = modelify(SAEModel.LIAEEncFlow(resolution, self.options['lighter_encoder'], ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
enc_output_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
@ -143,8 +149,8 @@ class SAEModel(ModelBase):
pred_dst_dstm = self.decoderm(warped_dst_inter_code)
pred_src_dstm = self.decoderm(warped_src_dst_inter_code)
else:
self.encoder = modelify(SAEModel.DFEncFlow(resolution, adapt_k_size, self.options['lighter_encoder'], ae_dims=ae_dims, ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
elif self.options['archi'] == 'df':
self.encoder = modelify(SAEModel.DFEncFlow(resolution, self.options['lighter_encoder'], ae_dims=ae_dims, ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
@ -169,6 +175,38 @@ class SAEModel(ModelBase):
pred_dst_dst = self.decoder_dst(warped_dst_code)
pred_src_dst = self.decoder_src(warped_dst_code)
if self.options['learn_mask']:
pred_src_srcm = self.decoder_srcm(warped_src_code)
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
pred_src_dstm = self.decoder_srcm(warped_dst_code)
elif self.options['archi'] == 'vg':
self.encoder = modelify(SAEModel.VGEncFlow(resolution, self.options['lighter_encoder'], ae_dims=ae_dims, ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
self.decoder_src = modelify(SAEModel.VGDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2 )) (dec_Inputs)
self.decoder_dst = modelify(SAEModel.VGDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2 )) (dec_Inputs)
if self.options['learn_mask']:
self.decoder_srcm = modelify(SAEModel.VGDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
self.decoder_dstm = modelify(SAEModel.VGDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
if not self.is_first_run():
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
if self.options['learn_mask']:
self.decoder_srcm.load_weights (self.get_strpath_storage_for_file(self.decoder_srcmH5))
self.decoder_dstm.load_weights (self.get_strpath_storage_for_file(self.decoder_dstmH5))
warped_src_code = self.encoder (warped_src)
warped_dst_code = self.encoder (warped_dst)
pred_src_src = self.decoder_src(warped_src_code)
pred_dst_dst = self.decoder_dst(warped_dst_code)
pred_src_dst = self.decoder_src(warped_dst_code)
if self.options['learn_mask']:
pred_src_srcm = self.decoder_srcm(warped_src_code)
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
@ -198,6 +236,15 @@ class SAEModel(ModelBase):
target_dst_masked_ar = [ target_dst_sigm_ar[i]*target_dstm_sigm_ar[i] for i in range(len(target_dst_sigm_ar))]
target_dst_anti_masked_ar = [ target_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(target_dst_sigm_ar))]
pred_src_src_masked_ar = [ pred_src_src_sigm_ar[i] * target_srcm_sigm_ar[i] for i in range(len(pred_src_src_sigm_ar))]
pred_dst_dst_masked_ar = [ pred_dst_dst_sigm_ar[i] * target_dstm_sigm_ar[i] for i in range(len(pred_dst_dst_sigm_ar))]
target_src_masked_ar_opt = target_src_masked_ar if masked_training else target_src_sigm_ar
target_dst_masked_ar_opt = target_dst_masked_ar if masked_training else target_dst_sigm_ar
pred_src_src_masked_ar_opt = pred_src_src_masked_ar if masked_training else pred_src_src_sigm_ar
pred_dst_dst_masked_ar_opt = pred_dst_dst_masked_ar if masked_training else pred_dst_dst_sigm_ar
psd_target_dst_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
psd_target_dst_anti_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
@ -215,9 +262,9 @@ class SAEModel(ModelBase):
src_dst_mask_loss_train_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights + self.decoder_dstm.trainable_weights
if not self.options['pixel_loss']:
src_loss_batch = sum([ ( 100*K.square( dssim(max_value=2.0)( target_src_masked_ar[i], pred_src_src_sigm_ar[i] * target_srcm_sigm_ar[i] ) )) for i in range(len(target_src_masked_ar)) ])
src_loss_batch = sum([ ( 100*K.square( dssim(max_value=2.0)( target_src_masked_ar_opt[i], pred_src_src_masked_ar_opt[i] ) )) for i in range(len(target_src_masked_ar_opt)) ])
else:
src_loss_batch = sum([ K.mean ( 100*K.square( target_src_masked_ar[i] - pred_src_src_sigm_ar[i] * target_srcm_sigm_ar[i] ), axis=[1,2,3]) for i in range(len(target_src_masked_ar)) ])
src_loss_batch = sum([ K.mean ( 100*K.square( target_src_masked_ar_opt[i] - pred_src_src_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_src_masked_ar_opt)) ])
src_loss = K.mean(src_loss_batch)
@ -235,9 +282,9 @@ class SAEModel(ModelBase):
src_loss += bg_loss
if not self.options['pixel_loss']:
dst_loss_batch = sum([ ( 100*K.square(dssim(max_value=2.0)( target_dst_masked_ar[i], pred_dst_dst_sigm_ar[i] * target_dstm_sigm_ar[i] ) )) for i in range(len(target_dst_masked_ar)) ])
dst_loss_batch = sum([ ( 100*K.square(dssim(max_value=2.0)( target_dst_masked_ar_opt[i], pred_dst_dst_masked_ar_opt[i] ) )) for i in range(len(target_dst_masked_ar_opt)) ])
else:
dst_loss_batch = sum([ K.mean ( 100*K.square( target_dst_masked_ar[i] - pred_dst_dst_sigm_ar[i] * target_dstm_sigm_ar[i] ), axis=[1,2,3]) for i in range(len(target_dst_masked_ar)) ])
dst_loss_batch = sum([ K.mean ( 100*K.square( target_dst_masked_ar_opt[i] - pred_dst_dst_masked_ar_opt[i] ), axis=[1,2,3]) for i in range(len(target_dst_masked_ar_opt)) ])
dst_loss = K.mean(dst_loss_batch)
@ -392,26 +439,66 @@ class SAEModel(ModelBase):
**in_options)
@staticmethod
def LIAEEncFlow(resolution, adapt_k_size, light_enc, ed_ch_dims=42):
def initialize_nn_functions():
exec (nnlib.import_all(), locals(), globals())
k_size = resolution // 16 + 1 if adapt_k_size else 5
strides = resolution // 32 if adapt_k_size else 2
class ResidualBlock(object):
def __init__(self, filters, kernel_size=3, padding='same', use_reflection_padding=False):
self.filters = filters
self.kernel_size = kernel_size
self.padding = padding #if not use_reflection_padding else 'valid'
self.use_reflection_padding = use_reflection_padding
def __call__(self, inp):
var_x = LeakyReLU(alpha=0.2)(inp)
#if self.use_reflection_padding:
# #var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=RandomNormal(0, 0.02) )(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
#if self.use_reflection_padding:
# #var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=RandomNormal(0, 0.02) )(var_x)
var_x = Scale(gamma_init=keras.initializers.Constant(value=0.1))(var_x)
var_x = Add()([var_x, inp])
var_x = LeakyReLU(alpha=0.2)(var_x)
return var_x
SAEModel.ResidualBlock = ResidualBlock
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, k_size, strides=strides, padding='same')(x))
return LeakyReLU(0.1)(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x))
return func
SAEModel.downscale = downscale
def downscale_sep (dim):
def func(x):
return LeakyReLU(0.1)(SeparableConv2D(dim, k_size, strides=strides, padding='same')(x))
return LeakyReLU(0.1)(SeparableConv2D(dim, kernel_size=5, strides=2, padding='same', depthwise_initializer=RandomNormal(0, 0.02), pointwise_initializer=RandomNormal(0, 0.02) )(x))
return func
SAEModel.downscale_sep = downscale_sep
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same', kernel_initializer=RandomNormal(0, 0.02) )(x)))
return func
SAEModel.upscale = upscale
def to_bgr (output_nc):
def func(x):
return Conv2D(output_nc, kernel_size=5, padding='same', activation='tanh', kernel_initializer=RandomNormal(0, 0.02))(x)
return func
SAEModel.to_bgr = to_bgr
@staticmethod
def LIAEEncFlow(resolution, light_enc, ed_ch_dims=42):
exec (nnlib.import_all(), locals(), globals())
upscale = SAEModel.upscale
downscale = SAEModel.downscale
downscale_sep = SAEModel.downscale_sep
def func(input):
ed_dims = K.int_shape(input)[-1]*ed_ch_dims
@ -434,13 +521,9 @@ class SAEModel(ModelBase):
@staticmethod
def LIAEInterFlow(resolution, ae_dims=256):
exec (nnlib.import_all(), locals(), globals())
upscale = SAEModel.upscale
lowest_dense_res=resolution // 16
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def func(input):
x = input[0]
x = Dense(ae_dims)(x)
@ -453,17 +536,10 @@ class SAEModel(ModelBase):
@staticmethod
def LIAEDecFlow(output_nc,ed_ch_dims=21, multiscale_count=1):
exec (nnlib.import_all(), locals(), globals())
upscale = SAEModel.upscale
to_bgr = SAEModel.to_bgr
ed_dims = output_nc * ed_ch_dims
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def to_bgr ():
def func(x):
return Conv2D(output_nc, kernel_size=5, padding='same', activation='tanh')(x)
return func
def func(input):
x = input[0]
@ -471,45 +547,28 @@ class SAEModel(ModelBase):
x1 = upscale(ed_dims*8)( x )
if multiscale_count >= 3:
outputs += [ to_bgr() ( x1 ) ]
outputs += [ to_bgr(output_nc) ( x1 ) ]
x2 = upscale(ed_dims*4)( x1 )
if multiscale_count >= 2:
outputs += [ to_bgr() ( x2 ) ]
outputs += [ to_bgr(output_nc) ( x2 ) ]
x3 = upscale(ed_dims*2)( x2 )
outputs += [ to_bgr() ( x3 ) ]
outputs += [ to_bgr(output_nc) ( x3 ) ]
return outputs
return func
@staticmethod
def DFEncFlow(resolution, adapt_k_size, light_enc, ae_dims=512, ed_ch_dims=42):
def DFEncFlow(resolution, light_enc, ae_dims=512, ed_ch_dims=42):
exec (nnlib.import_all(), locals(), globals())
k_size = resolution // 16 + 1 if adapt_k_size else 5
strides = resolution // 32 if adapt_k_size else 2
upscale = SAEModel.upscale
downscale = SAEModel.downscale
downscale_sep = SAEModel.downscale_sep
lowest_dense_res = resolution // 16
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, k_size, strides=strides, padding='same')(x))
return func
def downscale_sep (dim):
def func(x):
return LeakyReLU(0.1)(SeparableConv2D(dim, k_size, strides=strides, padding='same')(x))
return func
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def func(input):
x = input
@ -536,20 +595,10 @@ class SAEModel(ModelBase):
@staticmethod
def DFDecFlow(output_nc, ed_ch_dims=21, multiscale_count=1):
exec (nnlib.import_all(), locals(), globals())
upscale = SAEModel.upscale
to_bgr = SAEModel.to_bgr
ed_dims = output_nc * ed_ch_dims
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def to_bgr ():
def func(x):
return Conv2D(output_nc, kernel_size=5, padding='same', activation='tanh')(x)
return func
def func(input):
x = input[0]
@ -557,18 +606,95 @@ class SAEModel(ModelBase):
x1 = upscale(ed_dims*8)( x )
if multiscale_count >= 3:
outputs += [ to_bgr() ( x1 ) ]
outputs += [ to_bgr(output_nc) ( x1 ) ]
x2 = upscale(ed_dims*4)( x1 )
if multiscale_count >= 2:
outputs += [ to_bgr() ( x2 ) ]
outputs += [ to_bgr(output_nc) ( x2 ) ]
x3 = upscale(ed_dims*2)( x2 )
outputs += [ to_bgr() ( x3 ) ]
outputs += [ to_bgr(output_nc) ( x3 ) ]
return outputs
return func
@staticmethod
def VGEncFlow(resolution, light_enc, ae_dims=512, ed_ch_dims=42):
exec (nnlib.import_all(), locals(), globals())
upscale = SAEModel.upscale
downscale = SAEModel.downscale
downscale_sep = SAEModel.downscale_sep
ResidualBlock = SAEModel.ResidualBlock
lowest_dense_res = resolution // 16
def func(input):
x = input
ed_dims = K.int_shape(input)[-1]*ed_ch_dims
while np.modf(ed_dims / 4)[0] != 0.0:
ed_dims -= 1
in_conv_filters = ed_dims if resolution <= 128 else ed_dims + (resolution//128)*ed_ch_dims
x = tmp_x = Conv2D (in_conv_filters, kernel_size=5, strides=2, padding='same') (x)
for _ in range ( 8 if light_enc else 16 ):
x = ResidualBlock(ed_dims)(x)
x = Add()([x, tmp_x])
x = downscale(ed_dims)(x)
x = SubpixelUpscaler()(x)
x = downscale(ed_dims)(x)
x = SubpixelUpscaler()(x)
x = downscale(ed_dims)(x)
if light_enc:
x = downscale_sep (ed_dims*2)(x)
else:
x = downscale (ed_dims*2)(x)
x = downscale(ed_dims*4)(x)
if light_enc:
x = downscale_sep (ed_dims*8)(x)
else:
x = downscale (ed_dims*8)(x)
x = Dense(ae_dims)(Flatten()(x))
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x)
x = upscale(ae_dims)(x)
return x
return func
@staticmethod
def VGDecFlow(output_nc, ed_ch_dims=21, multiscale_count=1):
exec (nnlib.import_all(), locals(), globals())
upscale = SAEModel.upscale
to_bgr = SAEModel.to_bgr
ResidualBlock = SAEModel.ResidualBlock
ed_dims = output_nc * ed_ch_dims
def func(input):
x = input[0]
x = upscale( ed_dims*8 )(x)
x = ResidualBlock( ed_dims*8 )(x)
x = upscale( ed_dims*4 )(x)
x = ResidualBlock( ed_dims*4 )(x)
x = upscale( ed_dims*2 )(x)
x = ResidualBlock( ed_dims*2 )(x)
x = to_bgr(output_nc) (x)
return x
return func

View file

@ -62,6 +62,7 @@ Lambda = keras.layers.Lambda
Add = keras.layers.Add
Concatenate = keras.layers.Concatenate
Flatten = keras.layers.Flatten
Reshape = keras.layers.Reshape
@ -77,9 +78,11 @@ gaussian_blur = nnlib.gaussian_blur
style_loss = nnlib.style_loss
dssim = nnlib.dssim
#ReflectionPadding2D = nnlib.ReflectionPadding2D
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
#ReflectionPadding2D = nnlib.ReflectionPadding2D
#AddUniformNoise = nnlib.AddUniformNoise
"""
code_import_keras_contrib_string = \
@ -184,8 +187,9 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if 'TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1':
suppressor.__exit__()
nnlib.__initialize_keras_functions()
nnlib.code_import_keras = compile (nnlib.code_import_keras_string,'','exec')
nnlib.__initialize_keras_functions()
return nnlib.code_import_keras
@staticmethod
@ -395,8 +399,40 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.PixelShuffler = PixelShuffler
nnlib.SubpixelUpscaler = PixelShuffler
'''
class Scale(keras.layers.Layer):
"""
GAN Custom Scal Layer
Code borrows from https://github.com/flyyufelix/cnn_finetune
"""
def __init__(self, weights=None, axis=-1, gamma_init='zero', **kwargs):
self.axis = axis
self.gamma_init = keras.initializers.get(gamma_init)
self.initial_weights = weights
super(Scale, self).__init__(**kwargs)
def build(self, input_shape):
self.input_spec = [keras.engine.InputSpec(shape=input_shape)]
# Compatibility with TensorFlow >= 1.0.0
self.gamma = K.variable(self.gamma_init((1,)), name='{}_gamma'.format(self.name))
self.trainable_weights = [self.gamma]
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
def call(self, x, mask=None):
return self.gamma * x
def get_config(self):
config = {"axis": self.axis}
base_config = super(Scale, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
'''
not implemented in plaidML
class ReflectionPadding2D(keras.layers.Layer):
def __init__(self, padding=(1, 1), **kwargs):
self.padding = tuple(padding)
@ -411,27 +447,10 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
w_pad,h_pad = self.padding
return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
nnlib.ReflectionPadding2D = ReflectionPadding2D
class AddUniformNoise(keras.layers.Layer):
def __init__(self, power=1.0, minval=-1.0, maxval=1.0, **kwargs):
super(AddUniformNoise, self).__init__(**kwargs)
self.power = power
self.supports_masking = True
self.minval = minval
self.maxval = maxval
def call(self, inputs, training=None):
def noised():
return inputs + self.power*K.random_uniform(shape=K.shape(inputs), minval=self.minval, maxval=self.maxval)
return K.in_train_phase(noised, inputs, training=training)
def get_config(self):
config = {'power': self.power, 'minval': self.minval, 'maxval': self.maxval}
base_config = super(AddUniformNoise, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.AddUniformNoise = AddUniformNoise
'''
@staticmethod
def import_keras_contrib(device_config = None):
if nnlib.keras_contrib is not None:
@ -489,6 +508,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return 10*dssim() (y_true*mask, y_pred*mask)
nnlib.DSSIMMSEMaskLoss = DSSIMMSEMaskLoss
'''
def ResNet(output_nc, use_batch_norm, ngf=64, n_blocks=6, use_dropout=False):
exec (nnlib.import_all(), locals(), globals())