SAE: added new archi 'vg'

This commit is contained in:
iperov 2019-02-21 17:53:59 +04:00
parent d66829aae4
commit f0a20b46d3
5 changed files with 378 additions and 119 deletions

View file

@ -62,6 +62,7 @@ Lambda = keras.layers.Lambda
Add = keras.layers.Add
Concatenate = keras.layers.Concatenate
Flatten = keras.layers.Flatten
Reshape = keras.layers.Reshape
@ -77,9 +78,11 @@ gaussian_blur = nnlib.gaussian_blur
style_loss = nnlib.style_loss
dssim = nnlib.dssim
#ReflectionPadding2D = nnlib.ReflectionPadding2D
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
#ReflectionPadding2D = nnlib.ReflectionPadding2D
#AddUniformNoise = nnlib.AddUniformNoise
"""
code_import_keras_contrib_string = \
@ -183,9 +186,10 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if 'TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1':
suppressor.__exit__()
nnlib.__initialize_keras_functions()
nnlib.code_import_keras = compile (nnlib.code_import_keras_string,'','exec')
nnlib.__initialize_keras_functions()
return nnlib.code_import_keras
@staticmethod
@ -394,9 +398,41 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return dict(list(base_config.items()) + list(config.items()))
nnlib.PixelShuffler = PixelShuffler
nnlib.SubpixelUpscaler = PixelShuffler
'''
nnlib.SubpixelUpscaler = PixelShuffler
class Scale(keras.layers.Layer):
"""
GAN Custom Scal Layer
Code borrows from https://github.com/flyyufelix/cnn_finetune
"""
def __init__(self, weights=None, axis=-1, gamma_init='zero', **kwargs):
self.axis = axis
self.gamma_init = keras.initializers.get(gamma_init)
self.initial_weights = weights
super(Scale, self).__init__(**kwargs)
def build(self, input_shape):
self.input_spec = [keras.engine.InputSpec(shape=input_shape)]
# Compatibility with TensorFlow >= 1.0.0
self.gamma = K.variable(self.gamma_init((1,)), name='{}_gamma'.format(self.name))
self.trainable_weights = [self.gamma]
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
def call(self, x, mask=None):
return self.gamma * x
def get_config(self):
config = {"axis": self.axis}
base_config = super(Scale, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
'''
not implemented in plaidML
class ReflectionPadding2D(keras.layers.Layer):
def __init__(self, padding=(1, 1), **kwargs):
self.padding = tuple(padding)
@ -410,28 +446,11 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def call(self, x, mask=None):
w_pad,h_pad = self.padding
return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
nnlib.ReflectionPadding2D = ReflectionPadding2D
class AddUniformNoise(keras.layers.Layer):
def __init__(self, power=1.0, minval=-1.0, maxval=1.0, **kwargs):
super(AddUniformNoise, self).__init__(**kwargs)
self.power = power
self.supports_masking = True
self.minval = minval
self.maxval = maxval
def call(self, inputs, training=None):
def noised():
return inputs + self.power*K.random_uniform(shape=K.shape(inputs), minval=self.minval, maxval=self.maxval)
return K.in_train_phase(noised, inputs, training=training)
def get_config(self):
config = {'power': self.power, 'minval': self.minval, 'maxval': self.maxval}
base_config = super(AddUniformNoise, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.AddUniformNoise = AddUniformNoise
'''
nnlib.ReflectionPadding2D = ReflectionPadding2D
'''
@staticmethod
def import_keras_contrib(device_config = None):
if nnlib.keras_contrib is not None:
@ -489,6 +508,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return 10*dssim() (y_true*mask, y_pred*mask)
nnlib.DSSIMMSEMaskLoss = DSSIMMSEMaskLoss
'''
def ResNet(output_nc, use_batch_norm, ngf=64, n_blocks=6, use_dropout=False):
exec (nnlib.import_all(), locals(), globals())