revert back Adam

This commit is contained in:
iperov 2019-03-11 21:52:36 +04:00
parent e4637336ef
commit ee8dbcbc35
3 changed files with 56 additions and 66 deletions

View file

@ -121,7 +121,8 @@ class ModelBase(object):
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.K = nnlib.keras.backend
self.onInitialize()
self.options['batch_size'] = self.batch_size
@ -282,17 +283,20 @@ class ModelBase(object):
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
if Path(opt_filename).exists():
h5dict = self.keras.utils.io_utils.H5Dict(opt_filename, mode='r')
try:
with open(opt_filename, "rb") as f:
d = pickle.loads(f.read())
for x in optimizer_filename_list:
opt, filename = x
if filename in h5dict:
opt = opt.__class__.from_config( json.loads(h5dict[filename]) )
x[0] = opt
finally:
h5dict.close()
return [x[0] for x in optimizer_filename_list]
if filename in d:
weights = d[filename].get('weights', None)
if weights:
opt.set_weights(weights)
print("set ok")
except Exception as e:
print ("Unable to load ", opt_filename)
def save_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
@ -302,13 +306,23 @@ class ModelBase(object):
rename_list = model_filename_list
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
h5dict = self.keras.utils.io_utils.H5Dict(opt_filename + '.tmp', mode='w')
try:
d = {}
for opt, filename in optimizer_filename_list:
h5dict[filename] = json.dumps(opt.get_config())
finally:
h5dict.close()
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
d[filename] = fd
with open(opt_filename+'.tmp', 'wb') as f:
f.write( pickle.dumps(d) )
rename_list += [('', 'opt.h5')]
except Exception as e:
print ("Unable to save ", opt_filename)
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)

View file

@ -223,13 +223,6 @@ class SAEModel(ModelBase):
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
pred_src_dstm = self.decoder_srcm(warped_dst_code)
self.src_dst_opt, \
self.src_dst_mask_opt = self.load_weights_safe(
weights_to_load,
[ [Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 'src_dst_opt'],
[Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 'src_dst_mask_opt']
])
pred_src_src, pred_dst_dst, pred_src_dst, = [ [x] if type(x) != list else x for x in [pred_src_src, pred_dst_dst, pred_src_dst, ] ]
if self.options['learn_mask']:
@ -267,6 +260,9 @@ class SAEModel(ModelBase):
psd_target_dst_anti_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
if self.is_training_mode:
self.src_dst_opt = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
self.src_dst_mask_opt = Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
if self.options['archi'] == 'liae':
src_dst_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
if self.options['learn_mask']:
@ -325,14 +321,17 @@ class SAEModel(ModelBase):
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1], pred_src_dstm[-1]])
else:
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1] ] )
self.load_weights_safe(weights_to_load)#, [ [self.src_dst_opt, 'src_dst_opt'], [self.src_dst_mask_opt, 'src_dst_mask_opt']])
else:
self.load_weights_safe(weights_to_load)
if self.options['learn_mask']:
self.AE_convert = K.function ([warped_dst],[ pred_src_dst[-1], pred_src_dstm[-1] ])
else:
self.AE_convert = K.function ([warped_dst],[ pred_src_dst[-1] ])
if self.is_training_mode:
if self.is_training_mode:
self.src_sample_losses = []
self.dst_sample_losses = []
@ -353,6 +352,7 @@ class SAEModel(ModelBase):
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, normalize_tanh = True),
output_sample_types=output_sample_types )
])
#override
def onSave(self):
opt_ar = [ [self.src_dst_opt, 'src_dst_opt'],

View file

@ -71,8 +71,8 @@ ZeroPadding2D = keras.layers.ZeroPadding2D
RandomNormal = keras.initializers.RandomNormal
Model = keras.models.Model
#Adam = keras.optimizers.Adam
Adam = nnlib.Adam
Adam = keras.optimizers.Adam
FastAdam = nnlib.FastAdam
modelify = nnlib.modelify
gaussian_blur = nnlib.gaussian_blur
@ -434,21 +434,16 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
class Adam(keras.optimizers.Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False, iterations=0, **kwargs):
super(Adam, self).__init__(**kwargs)
class FastAdam(keras.optimizers.Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, iterations=0, **kwargs):
super(FastAdam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(iterations, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
self.epsilon = K.epsilon()
@keras.legacy.interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
@ -456,34 +451,16 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
(1. - K.pow(self.beta_1, t)))
self.weights = [self.iterations]
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1) for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
for p, g in zip(params, grads):
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
if self.amsgrad:
vhat_t = K.maximum(vhat, v_t)
p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
self.updates.append(K.update(vhat, vhat_t))
else:
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
m_t = (1. - self.beta_1) * g
v_t = (1. - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
new_p = p_t
# Apply constraints.
@ -497,15 +474,14 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
config = {'iterations': int(K.get_value(self.iterations)),
'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon,
'amsgrad': self.amsgrad}
base_config = super(Adam, self).get_config()
'beta_2': float(K.get_value(self.beta_2))
}
base_config = super(FastAdam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Adam = Adam
'''
nnlib.FastAdam = FastAdam
'''
not implemented in plaidML
class ReflectionPadding2D(keras.layers.Layer):
def __init__(self, padding=(1, 1), **kwargs):