SAEHD: added 'dfuhd' and 'liaeuhd' archi

This commit is contained in:
Colombo 2020-03-23 22:01:44 +04:00
parent e5f736680d
commit eddebedcf6
5 changed files with 190 additions and 155 deletions

View file

@ -6,7 +6,7 @@ class DeepFakeArchi(nn.ArchiBase):
resolution
mod None - default
'chervonij'
'uhd'
'quick'
"""
def __init__(self, resolution, mod=None):
@ -197,158 +197,7 @@ class DeepFakeArchi(nn.ArchiBase):
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(m))
elif mod == 'chervonij':
class Downscale(nn.ModelBase):
def __init__(self, in_ch, kernel_size=3, dilations=1, *kwargs ):
self.in_ch = in_ch
self.kernel_size = kernel_size
self.dilations = dilations
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv_base1 = nn.Conv2D( self.in_ch, self.in_ch//2, kernel_size=1, strides=1, padding='SAME', dilations=self.dilations)
self.conv_l1 = nn.Conv2D( self.in_ch//2, self.in_ch//2, kernel_size=self.kernel_size, strides=1, padding='SAME', dilations=self.dilations)
self.conv_l2 = nn.Conv2D( self.in_ch//2, self.in_ch//2, kernel_size=self.kernel_size, strides=2, padding='SAME', dilations=self.dilations)
self.conv_base2 = nn.Conv2D( self.in_ch, self.in_ch//2, kernel_size=1, strides=1, padding='SAME', dilations=self.dilations)
self.conv_r1 = nn.Conv2D( self.in_ch//2, self.in_ch//2, kernel_size=self.kernel_size, strides=2, padding='SAME', dilations=self.dilations)
self.pool_size = [1,1,2,2] if nn.data_format == 'NCHW' else [1,2,2,1]
def forward(self, x):
x_l = self.conv_base1(x)
x_l = self.conv_l1(x_l)
x_l = self.conv_l2(x_l)
x_r = self.conv_base2(x)
x_r = self.conv_r1(x_r)
x_pool = tf.nn.max_pool(x, ksize=self.pool_size, strides=self.pool_size, padding='SAME', data_format=nn.data_format)
x = tf.concat([x_l, x_r, x_pool], axis=nn.conv2d_ch_axis)
x = tf.nn.leaky_relu(x, 0.1)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( out_ch, out_ch, kernel_size=kernel_size, padding='SAME')
self.conv3 = nn.Conv2D( out_ch, out_ch, kernel_size=kernel_size, padding='SAME')
self.conv4 = nn.Conv2D( out_ch, out_ch, kernel_size=kernel_size, padding='SAME')
def forward(self, x):
x0 = self.conv1(x)
x1 = self.conv2(x0)
x2 = self.conv3(x1)
x3 = self.conv4(x2)
x = tf.concat([x0, x1, x2, x3], axis=nn.conv2d_ch_axis)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME')
self.norm = nn.FRNorm2D(ch)
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = self.norm(inp + x)
x = tf.nn.leaky_relu(x, 0.2)
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, **kwargs):
self.conv0 = nn.Conv2D(in_ch, e_ch, kernel_size=3, padding='SAME')
self.down0 = Downscale(e_ch)
self.down1 = Downscale(e_ch*2)
self.down2 = Downscale(e_ch*4)
self.down3 = Downscale(e_ch*8)
self.down4 = Downscale(e_ch*16)
def forward(self, inp):
x = self.conv0(inp)
x = self.down0(x)
x = self.down1(x)
x = self.down2(x)
x = self.down3(x)
x = self.down4(x)
x = nn.flatten(x)
return x
lowest_dense_res = resolution // 32
class Inter(nn.ModelBase):
def __init__(self, in_ch, ae_ch, ae_out_ch, **kwargs):
self.in_ch, self.ae_ch, self.ae_out_ch = in_ch, ae_ch, ae_out_ch
super().__init__(**kwargs)
def on_build(self, **kwargs):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
self.dense_l = nn.Dense( in_ch, ae_ch//2, kernel_initializer=tf.initializers.orthogonal)
self.dense_r = nn.Dense( in_ch, ae_ch//2, kernel_initializer=tf.initializers.orthogonal)#maxout_ch=4,
self.dense = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * (ae_out_ch//2), kernel_initializer=tf.initializers.orthogonal)
self.upscale1 = Upscale(ae_out_ch//2, ae_out_ch//2)
def forward(self, inp):
x0 = self.dense_l(inp)
x1 = self.dense_r(inp)
x = tf.concat([x0, x1], axis=-1)
x = self.dense(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch//2)
x = self.upscale1(x)
return x
def get_out_ch(self):
return self.ae_out_ch//2
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch, **kwargs):
self.upscale0 = Upscale(in_ch, d_ch*8)
self.upscale1 = Upscale(d_ch*8, d_ch*4)
self.upscale2 = Upscale(d_ch*4, d_ch*2)
self.upscale3 = Upscale(d_ch*2, d_ch)
self.res0 = ResidualBlock(d_ch*8)
self.res1 = ResidualBlock(d_ch*4)
self.res2 = ResidualBlock(d_ch*2)
self.res3 = ResidualBlock(d_ch)
self.out_conv = nn.Conv2D( d_ch, 3, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
x = self.res1(x)
x = self.upscale2(x)
x = self.res2(x)
x = self.upscale3(x)
x = self.res3(x)
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
m = self.upscalem3(m)
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(m))
elif mod == 'quick':
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
@ -482,7 +331,144 @@ class DeepFakeArchi(nn.ArchiBase):
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(y))
elif mod == 'uhd':
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.dilations = dilations
self.subpixel = subpixel
self.use_activator = use_activator
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch,
self.out_ch // (4 if self.subpixel else 1),
kernel_size=self.kernel_size,
strides=1 if self.subpixel else 2,
padding='SAME', dilations=self.dilations)
def forward(self, x):
x = self.conv1(x)
if self.subpixel:
x = nn.space_to_depth(x, 2)
if self.use_activator:
x = tf.nn.leaky_relu(x, 0.1)
return x
def get_out_ch(self):
return (self.out_ch // 4) * 4
class DownscaleBlock(nn.ModelBase):
def on_build(self, in_ch, ch, n_downscales, kernel_size, dilations=1, subpixel=True):
self.downs = []
last_ch = in_ch
for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size, dilations=dilations, subpixel=subpixel) )
last_ch = self.downs[-1].get_out_ch()
def forward(self, inp):
x = inp
for down in self.downs:
x = down(x)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME')
def forward(self, x):
x = self.conv1(x)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch*2, kernel_size=kernel_size, padding='SAME')
self.conv2 = nn.Conv2D( ch*2, ch, kernel_size=kernel_size, padding='SAME')
self.scale_add = nn.ScaleAdd(ch)
def forward(self, inp):
x = self.conv1(inp)
x = tf.nn.leaky_relu(x, 0.2)
x = self.conv2(x)
x = tf.nn.leaky_relu(x, 0.2)
x = self.scale_add([inp, x])
return x
class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, **kwargs):
self.down1 = DownscaleBlock(in_ch, e_ch, n_downscales=4, kernel_size=5, dilations=1, subpixel=False)
def forward(self, inp):
x = nn.flatten(self.down1(inp))
return x
lowest_dense_res = resolution // 16
class Inter(nn.ModelBase):
def on_build(self, in_ch, ae_ch, ae_out_ch, **kwargs):
self.ae_out_ch = ae_out_ch
self.dense_norm = nn.DenseNorm()
self.dense1 = nn.Dense( in_ch, ae_ch )
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
self.upscale1 = Upscale(ae_out_ch, ae_out_ch)
def forward(self, inp):
x = self.dense_norm(inp)
x = self.dense1(x)
x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
x = self.upscale1(x)
return x
@staticmethod
def get_code_res():
return lowest_dense_res
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch, **kwargs ):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
self.res0 = ResidualBlock(d_ch*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME')
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME')
def forward(self, inp):
z = inp
x = self.upscale0(z)
x = self.res0(x)
x = self.upscale1(x)
x = self.res1(x)
x = self.upscale2(x)
x = self.res2(x)
m = self.upscalem0(z)
m = self.upscalem1(m)
m = self.upscalem2(m)
return tf.nn.sigmoid(self.out_conv(x)), \
tf.nn.sigmoid(self.out_convm(m))
self.Encoder = Encoder
self.Inter = Inter
self.Decoder = Decoder

View file

@ -0,0 +1,16 @@
from core.leras import nn
tf = nn.tf
class DenseNorm(nn.LayerBase):
def __init__(self, dense=False, eps=1e-06, dtype=None, **kwargs):
self.dense = dense
if dtype is None:
dtype = nn.floatx
self.eps = tf.constant(eps, dtype=dtype, name="epsilon")
super().__init__(**kwargs)
def __call__(self, x):
return x * tf.rsqrt(tf.reduce_mean(tf.square(x), axis=-1, keepdims=True) + self.eps)
nn.DenseNorm = DenseNorm

View file

@ -0,0 +1,31 @@
from core.leras import nn
tf = nn.tf
class ScaleAdd(nn.LayerBase):
def __init__(self, ch, dtype=None, **kwargs):
if dtype is None:
dtype = nn.floatx
self.dtype = dtype
self.ch = ch
super().__init__(**kwargs)
def build_weights(self):
self.weight = tf.get_variable("weight",(self.ch,), dtype=self.dtype, initializer=tf.initializers.zeros() )
def get_weights(self):
return [self.weight]
def forward(self, inputs):
if nn.data_format == "NHWC":
shape = (1,1,1,self.ch)
else:
shape = (1,self.ch,1,1)
weight = tf.reshape ( self.weight, shape )
x0, x1 = inputs
x = x0 + x1*weight
return x
nn.ScaleAdd = ScaleAdd

View file

@ -9,4 +9,6 @@ from .BlurPool import *
from .BatchNorm2D import *
from .FRNorm2D import *
from .TLU import *
from .TLU import *
from .ScaleAdd import *
from .DenseNorm import *

View file

@ -61,7 +61,7 @@ class SAEHDModel(ModelBase):
resolution = np.clip ( (resolution // 16) * 16, 64, 512)
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf'], help_message="Half / mid face / full face / whole face. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead, but requires manual merge in Adobe After Effects.").lower()
self.options['archi'] = io.input_str ("AE architecture", default_archi, ['df','liae','dfhd','liaehd'], help_message="'df' keeps faces more natural.\n'liae' can fix overly different face shapes.\n'hd' are experimental versions.").lower()
self.options['archi'] = io.input_str ("AE architecture", default_archi, ['df','liae','dfhd','liaehd','dfuhd','liaeuhd'], help_message="'df' keeps faces more natural.\n'liae' can fix overly different face shapes.\n'hd' are experimental versions.").lower()
default_d_dims = 48 if self.options['archi'] == 'dfhd' else 64
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', default_d_dims)
@ -169,7 +169,7 @@ class SAEHDModel(ModelBase):
self.target_dstm_all = tf.placeholder (nn.floatx, mask_shape)
# Initializing model classes
model_archi = nn.DeepFakeArchi(resolution)
model_archi = nn.DeepFakeArchi(resolution, mod='uhd' if 'uhd' in archi else None)
with tf.device (models_opt_device):
if 'df' in archi: