diff --git a/core/leras/layers/SeparableConv2D.py b/core/leras/layers/SeparableConv2D.py new file mode 100644 index 0000000..3899c2e --- /dev/null +++ b/core/leras/layers/SeparableConv2D.py @@ -0,0 +1,103 @@ +import numpy as np +from core.leras import nn +tf = nn.tf + +class SeparableConv2D(nn.LayerBase): + """ + default kernel_initializer - CA + use_wscale bool enables equalized learning rate, if kernel_initializer is None, it will be forced to random_normal + """ + def __init__(self, in_ch, out_ch, kernel_size, depth_multiplier=1, strides=1, padding='SAME', dilations=1, use_bias=True, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ): + if not isinstance(strides, int): + raise ValueError ("strides must be an int type") + if not isinstance(dilations, int): + raise ValueError ("dilations must be an int type") + kernel_size = int(kernel_size) + + if dtype is None: + dtype = nn.floatx + + if isinstance(padding, str): + if padding == "SAME": + padding = ( (kernel_size - 1) * dilations + 1 ) // 2 + elif padding == "VALID": + padding = 0 + else: + raise ValueError ("Wrong padding type. Should be VALID SAME or INT or 4x INTs") + + if isinstance(padding, int): + if padding != 0: + if nn.data_format == "NHWC": + padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ] + else: + padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ] + else: + padding = None + + if nn.data_format == "NHWC": + strides = [1,strides,strides,1] + else: + strides = [1,1,strides,strides] + + if nn.data_format == "NHWC": + dilations = [dilations,dilations] + else: + dilations = [dilations,dilations] + + self.in_ch = in_ch + self.out_ch = out_ch + self.kernel_size = kernel_size + self.depth_multiplier = depth_multiplier + self.strides = strides + self.padding = padding + self.dilations = dilations + self.use_bias = use_bias + self.kernel_initializer = kernel_initializer + self.bias_initializer = bias_initializer + self.trainable = trainable + self.dtype = dtype + super().__init__(**kwargs) + + def build_weights(self): + kernel_initializer = self.kernel_initializer + + if kernel_initializer is None: + kernel_initializer = nn.initializers.ca() + + self.depthwise_kernel = tf.get_variable("depthwise_kernel", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) + self.pointwise_kernel = tf.get_variable("pointwise_kernel", (1,1,self.depth_multiplier*self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) + + if self.use_bias: + bias_initializer = self.bias_initializer + if bias_initializer is None: + bias_initializer = tf.initializers.zeros(dtype=self.dtype) + + self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable ) + + def get_weights(self): + weights = [self.depthwise_kernel, self.pointwise_kernel] + if self.use_bias: + weights += [self.bias] + return weights + + def forward(self, x): + depthwise_kernel = self.depthwise_kernel + pointwise_kernel = self.pointwise_kernel + + if self.padding is not None: + x = tf.pad (x, self.padding, mode='CONSTANT') + + x = tf.nn.separable_conv2d(x, depthwise_kernel, pointwise_kernel, self.strides, 'VALID', self.dilations, data_format=nn.data_format) + if self.use_bias: + if nn.data_format == "NHWC": + bias = tf.reshape (self.bias, (1,1,1,self.out_ch) ) + else: + bias = tf.reshape (self.bias, (1,self.out_ch,1,1) ) + x = tf.add(x, bias) + return x + + def __str__(self): + r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} " + + return r +nn.SeparableConv2D = SeparableConv2D \ No newline at end of file