diff --git a/models/Model_RecycleGAN/Model.py b/models/Model_RecycleGAN/Model.py index c0002af..8014b27 100644 --- a/models/Model_RecycleGAN/Model.py +++ b/models/Model_RecycleGAN/Model.py @@ -48,8 +48,8 @@ class RecycleGANModel(ModelBase): self.PA = modelify(RecycleGANModel.UNetTemporalPredictor(bgr_shape[2], use_batch_norm, ngf=npf))([Input(bgr_shape), Input(bgr_shape)]) self.PB = modelify(RecycleGANModel.UNetTemporalPredictor(bgr_shape[2], use_batch_norm, ngf=npf))([Input(bgr_shape), Input(bgr_shape)]) - self.DA = modelify(RecycleGANModel.NLayerDiscriminator(ndf=ndf) ) (Input(bgr_shape)) - self.DB = modelify(RecycleGANModel.NLayerDiscriminator(ndf=ndf) ) (Input(bgr_shape)) + self.DA = modelify(RecycleGANModel.PatchDiscriminator(ndf=ndf) ) (Input(bgr_shape)) + self.DB = modelify(RecycleGANModel.PatchDiscriminator(ndf=ndf) ) (Input(bgr_shape)) if not self.is_first_run(): weights_to_load = [ @@ -292,7 +292,7 @@ class RecycleGANModel(ModelBase): x = input - x = XConv2D(ngf, 7, strides=1, use_bias=True)(x) + x = ReLU()(XNormalization(XConv2D(ngf, 7, strides=1)(x))) x = ReLU()(XNormalization(XConv2D(ngf*2, 3, strides=2)(x))) x = ReLU()(XNormalization(XConv2D(ngf*4, 3, strides=2)(x))) @@ -463,7 +463,6 @@ class RecycleGANModel(ModelBase): x = XConv2D( f, 4, strides=2, padding='valid')(x) f = min( ndf*8, f*2 ) x = XNormalization(x) - x = Dropout(0.5)(x) x = LeakyReLU(0.2)(x) x = ZeroPadding2D((1,1))(x)