mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 13:09:56 -07:00
Merge pull request #7 from MachineEditor/revert-6-preview_filenames
Revert "added file names to model previews - except xseg"
This commit is contained in:
commit
e83370cf95
5 changed files with 10 additions and 38 deletions
|
@ -415,7 +415,7 @@ class ModelBase(object):
|
||||||
return ( ('loss_src', 0), ('loss_dst', 0) )
|
return ( ('loss_src', 0), ('loss_dst', 0) )
|
||||||
|
|
||||||
#overridable
|
#overridable
|
||||||
def onGetPreview(self, sample, for_history=False, filenames=None):
|
def onGetPreview(self, sample, for_history=False):
|
||||||
#you can return multiple previews
|
#you can return multiple previews
|
||||||
#return [ ('preview_name',preview_rgb), ... ]
|
#return [ ('preview_name',preview_rgb), ... ]
|
||||||
return []
|
return []
|
||||||
|
@ -447,7 +447,7 @@ class ModelBase(object):
|
||||||
return self.target_iter != 0 and self.iter >= self.target_iter
|
return self.target_iter != 0 and self.iter >= self.target_iter
|
||||||
|
|
||||||
def get_previews(self):
|
def get_previews(self):
|
||||||
return self.onGetPreview ( self.last_sample, filenames=self.last_sample_filenames)
|
return self.onGetPreview ( self.last_sample )
|
||||||
|
|
||||||
def get_static_previews(self):
|
def get_static_previews(self):
|
||||||
return self.onGetPreview (self.sample_for_preview)
|
return self.onGetPreview (self.sample_for_preview)
|
||||||
|
@ -585,19 +585,12 @@ class ModelBase(object):
|
||||||
|
|
||||||
def generate_next_samples(self):
|
def generate_next_samples(self):
|
||||||
sample = []
|
sample = []
|
||||||
sample_filenames = []
|
|
||||||
for generator in self.generator_list:
|
for generator in self.generator_list:
|
||||||
if generator.is_initialized():
|
if generator.is_initialized():
|
||||||
batch = generator.generate_next()
|
sample.append ( generator.generate_next() )
|
||||||
if type(batch) is tuple:
|
|
||||||
sample.append ( batch[0] )
|
|
||||||
sample_filenames.append( batch[1] )
|
|
||||||
else:
|
|
||||||
sample.append ( batch )
|
|
||||||
else:
|
else:
|
||||||
sample.append ( [] )
|
sample.append ( [] )
|
||||||
self.last_sample = sample
|
self.last_sample = sample
|
||||||
self.last_sample_filenames = sample_filenames
|
|
||||||
return sample
|
return sample
|
||||||
|
|
||||||
#overridable
|
#overridable
|
||||||
|
|
|
@ -10,7 +10,6 @@ from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
from core.cv2ex import *
|
from core.cv2ex import *
|
||||||
from utils.label_face import label_face_filename
|
|
||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -889,7 +888,7 @@ class AMPModel(ModelBase):
|
||||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, samples, for_history=False, filenames=None):
|
def onGetPreview(self, samples, for_history=False):
|
||||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||||
|
|
||||||
|
@ -921,10 +920,6 @@ class AMPModel(ModelBase):
|
||||||
|
|
||||||
i = np.random.randint(n_samples) if not for_history else 0
|
i = np.random.randint(n_samples) if not for_history else 0
|
||||||
|
|
||||||
if filenames is not None and len(filenames) > 0:
|
|
||||||
S[i] = label_face_filename(S[i], filenames[0][i])
|
|
||||||
D[i] = label_face_filename(D[i], filenames[1][i])
|
|
||||||
|
|
||||||
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
|
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
|
||||||
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
|
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
|
||||||
|
|
||||||
|
|
|
@ -9,7 +9,6 @@ from core.leras import nn
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
from utils.label_face import label_face_filename
|
|
||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -288,7 +287,7 @@ class QModel(ModelBase):
|
||||||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
||||||
|
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, samples, for_history=False, filenames=None):
|
def onGetPreview(self, samples, for_history=False):
|
||||||
( (warped_src, target_src, target_srcm),
|
( (warped_src, target_src, target_srcm),
|
||||||
(warped_dst, target_dst, target_dstm) ) = samples
|
(warped_dst, target_dst, target_dstm) ) = samples
|
||||||
|
|
||||||
|
@ -298,12 +297,6 @@ class QModel(ModelBase):
|
||||||
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
||||||
|
|
||||||
n_samples = min(4, self.get_batch_size() )
|
n_samples = min(4, self.get_batch_size() )
|
||||||
|
|
||||||
if filenames is not None and len(filenames) > 0:
|
|
||||||
for i in range(n_samples):
|
|
||||||
S[i] = label_face_filename(S[i], filenames[0][i])
|
|
||||||
D[i] = label_face_filename(D[i], filenames[1][i])
|
|
||||||
|
|
||||||
result = []
|
result = []
|
||||||
st = []
|
st = []
|
||||||
for i in range(n_samples):
|
for i in range(n_samples):
|
||||||
|
@ -314,7 +307,7 @@ class QModel(ModelBase):
|
||||||
|
|
||||||
st_m = []
|
st_m = []
|
||||||
for i in range(n_samples):
|
for i in range(n_samples):
|
||||||
ar = label_face_filename(S[i]*target_srcm[i], filenames[0][i]), SS[i], label_face_filename(D[i]*target_dstm[i], filenames[1][i]), DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
||||||
st_m.append ( np.concatenate ( ar, axis=1) )
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
||||||
|
|
||||||
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
|
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
|
||||||
|
|
|
@ -9,7 +9,6 @@ from core.leras import nn
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from samplelib import *
|
from samplelib import *
|
||||||
from utils.label_face import label_face_filename
|
|
||||||
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
@ -794,7 +793,7 @@ class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
|
||||||
|
|
||||||
cpu_count = min(multiprocessing.cpu_count(), 4)
|
cpu_count = multiprocessing.cpu_count()
|
||||||
src_generators_count = cpu_count // 2
|
src_generators_count = cpu_count // 2
|
||||||
dst_generators_count = cpu_count // 2
|
dst_generators_count = cpu_count // 2
|
||||||
if ct_mode is not None:
|
if ct_mode is not None:
|
||||||
|
@ -954,7 +953,7 @@ class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
|
||||||
#override
|
#override
|
||||||
def onGetPreview(self, samples, for_history=False, filenames=None):
|
def onGetPreview(self, samples, for_history=False):
|
||||||
( (warped_src, target_src, target_srcm, target_srcm_em),
|
( (warped_src, target_src, target_srcm, target_srcm_em),
|
||||||
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
|
||||||
|
|
||||||
|
@ -966,11 +965,6 @@ class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
|
||||||
|
|
||||||
if filenames is not None and len(filenames) > 0:
|
|
||||||
for i in range(n_samples):
|
|
||||||
S[i] = label_face_filename(S[i], filenames[0][i])
|
|
||||||
D[i] = label_face_filename(D[i], filenames[1][i])
|
|
||||||
|
|
||||||
if self.resolution <= 256:
|
if self.resolution <= 256:
|
||||||
result = []
|
result = []
|
||||||
|
|
||||||
|
@ -990,7 +984,7 @@ class SAEHDModel(ModelBase):
|
||||||
for i in range(n_samples):
|
for i in range(n_samples):
|
||||||
SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i]
|
SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i]
|
||||||
|
|
||||||
ar = label_face_filename(S[i]*target_srcm[i], filenames[0][i]), SS[i]*SSM[i], label_face_filename(D[i]*target_dstm[i], filenames[1][i]), DD[i]*DDM[i], SD[i]*SD_mask
|
ar = S[i]*target_srcm[i], SS[i]*SSM[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*SD_mask
|
||||||
st_m.append ( np.concatenate ( ar, axis=1) )
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
||||||
|
|
||||||
result += [ ('SAEHD masked', np.concatenate (st_m, axis=0 )), ]
|
result += [ ('SAEHD masked', np.concatenate (st_m, axis=0 )), ]
|
||||||
|
|
|
@ -115,7 +115,6 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
||||||
samples, index_host, ct_samples, ct_index_host = param
|
samples, index_host, ct_samples, ct_index_host = param
|
||||||
|
|
||||||
bs = self.batch_size
|
bs = self.batch_size
|
||||||
filenames = []
|
|
||||||
while True:
|
while True:
|
||||||
batches = None
|
batches = None
|
||||||
|
|
||||||
|
@ -142,6 +141,4 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
batches[i].append ( x[i] )
|
batches[i].append ( x[i] )
|
||||||
|
|
||||||
filenames.append(sample.filename)
|
yield [ np.array(batch) for batch in batches]
|
||||||
|
|
||||||
yield ([ np.array(batch) for batch in batches], filenames)
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue