Merge pull request #7 from MachineEditor/revert-6-preview_filenames

Revert "added file names to model previews - except xseg"
This commit is contained in:
Ognjen 2021-12-06 22:25:43 +01:00 committed by GitHub
commit e83370cf95
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 10 additions and 38 deletions

View file

@ -415,7 +415,7 @@ class ModelBase(object):
return ( ('loss_src', 0), ('loss_dst', 0) ) return ( ('loss_src', 0), ('loss_dst', 0) )
#overridable #overridable
def onGetPreview(self, sample, for_history=False, filenames=None): def onGetPreview(self, sample, for_history=False):
#you can return multiple previews #you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ] #return [ ('preview_name',preview_rgb), ... ]
return [] return []
@ -447,7 +447,7 @@ class ModelBase(object):
return self.target_iter != 0 and self.iter >= self.target_iter return self.target_iter != 0 and self.iter >= self.target_iter
def get_previews(self): def get_previews(self):
return self.onGetPreview ( self.last_sample, filenames=self.last_sample_filenames) return self.onGetPreview ( self.last_sample )
def get_static_previews(self): def get_static_previews(self):
return self.onGetPreview (self.sample_for_preview) return self.onGetPreview (self.sample_for_preview)
@ -585,19 +585,12 @@ class ModelBase(object):
def generate_next_samples(self): def generate_next_samples(self):
sample = [] sample = []
sample_filenames = []
for generator in self.generator_list: for generator in self.generator_list:
if generator.is_initialized(): if generator.is_initialized():
batch = generator.generate_next() sample.append ( generator.generate_next() )
if type(batch) is tuple:
sample.append ( batch[0] )
sample_filenames.append( batch[1] )
else:
sample.append ( batch )
else: else:
sample.append ( [] ) sample.append ( [] )
self.last_sample = sample self.last_sample = sample
self.last_sample_filenames = sample_filenames
return sample return sample
#overridable #overridable

View file

@ -10,7 +10,6 @@ from facelib import FaceType
from models import ModelBase from models import ModelBase
from samplelib import * from samplelib import *
from core.cv2ex import * from core.cv2ex import *
from utils.label_face import label_face_filename
from pathlib import Path from pathlib import Path
@ -889,7 +888,7 @@ class AMPModel(ModelBase):
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override #override
def onGetPreview(self, samples, for_history=False, filenames=None): def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em), ( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
@ -921,10 +920,6 @@ class AMPModel(ModelBase):
i = np.random.randint(n_samples) if not for_history else 0 i = np.random.randint(n_samples) if not for_history else 0
if filenames is not None and len(filenames) > 0:
S[i] = label_face_filename(S[i], filenames[0][i])
D[i] = label_face_filename(D[i], filenames[1][i])
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ] st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ] st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]

View file

@ -9,7 +9,6 @@ from core.leras import nn
from facelib import FaceType from facelib import FaceType
from models import ModelBase from models import ModelBase
from samplelib import * from samplelib import *
from utils.label_face import label_face_filename
from pathlib import Path from pathlib import Path
@ -288,7 +287,7 @@ class QModel(ModelBase):
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), ) return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override #override
def onGetPreview(self, samples, for_history=False, filenames=None): def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm), ( (warped_src, target_src, target_srcm),
(warped_dst, target_dst, target_dstm) ) = samples (warped_dst, target_dst, target_dstm) ) = samples
@ -298,12 +297,6 @@ class QModel(ModelBase):
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )] target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
n_samples = min(4, self.get_batch_size() ) n_samples = min(4, self.get_batch_size() )
if filenames is not None and len(filenames) > 0:
for i in range(n_samples):
S[i] = label_face_filename(S[i], filenames[0][i])
D[i] = label_face_filename(D[i], filenames[1][i])
result = [] result = []
st = [] st = []
for i in range(n_samples): for i in range(n_samples):
@ -314,7 +307,7 @@ class QModel(ModelBase):
st_m = [] st_m = []
for i in range(n_samples): for i in range(n_samples):
ar = label_face_filename(S[i]*target_srcm[i], filenames[0][i]), SS[i], label_face_filename(D[i]*target_dstm[i], filenames[1][i]), DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i]) ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
st_m.append ( np.concatenate ( ar, axis=1) ) st_m.append ( np.concatenate ( ar, axis=1) )
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ] result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]

View file

@ -9,7 +9,6 @@ from core.leras import nn
from facelib import FaceType from facelib import FaceType
from models import ModelBase from models import ModelBase
from samplelib import * from samplelib import *
from utils.label_face import label_face_filename
from pathlib import Path from pathlib import Path
@ -794,7 +793,7 @@ class SAEHDModel(ModelBase):
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
cpu_count = min(multiprocessing.cpu_count(), 4) cpu_count = multiprocessing.cpu_count()
src_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2
if ct_mode is not None: if ct_mode is not None:
@ -954,7 +953,7 @@ class SAEHDModel(ModelBase):
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override #override
def onGetPreview(self, samples, for_history=False, filenames=None): def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em), ( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
@ -966,11 +965,6 @@ class SAEHDModel(ModelBase):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution ) n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
if filenames is not None and len(filenames) > 0:
for i in range(n_samples):
S[i] = label_face_filename(S[i], filenames[0][i])
D[i] = label_face_filename(D[i], filenames[1][i])
if self.resolution <= 256: if self.resolution <= 256:
result = [] result = []
@ -990,7 +984,7 @@ class SAEHDModel(ModelBase):
for i in range(n_samples): for i in range(n_samples):
SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i] SD_mask = DDM[i]*SDM[i] if self.face_type < FaceType.HEAD else SDM[i]
ar = label_face_filename(S[i]*target_srcm[i], filenames[0][i]), SS[i]*SSM[i], label_face_filename(D[i]*target_dstm[i], filenames[1][i]), DD[i]*DDM[i], SD[i]*SD_mask ar = S[i]*target_srcm[i], SS[i]*SSM[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*SD_mask
st_m.append ( np.concatenate ( ar, axis=1) ) st_m.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAEHD masked', np.concatenate (st_m, axis=0 )), ] result += [ ('SAEHD masked', np.concatenate (st_m, axis=0 )), ]

View file

@ -115,7 +115,6 @@ class SampleGeneratorFace(SampleGeneratorBase):
samples, index_host, ct_samples, ct_index_host = param samples, index_host, ct_samples, ct_index_host = param
bs = self.batch_size bs = self.batch_size
filenames = []
while True: while True:
batches = None batches = None
@ -142,6 +141,4 @@ class SampleGeneratorFace(SampleGeneratorBase):
for i in range(len(x)): for i in range(len(x)):
batches[i].append ( x[i] ) batches[i].append ( x[i] )
filenames.append(sample.filename) yield [ np.array(batch) for batch in batches]
yield ([ np.array(batch) for batch in batches], filenames)