diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 922c4e4..cc3cb43 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -455,9 +455,9 @@ class SAEHDModel(ModelBase): if self.is_training_mode: lr_dropout = 0.3 if self.options['lr_dropout'] else 0.0 - self.src_dst_opt = RMSprop(lr=5e-5, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) - self.src_dst_mask_opt = RMSprop(lr=5e-5, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) - self.D_opt = RMSprop(lr=5e-5, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) + self.src_dst_opt = RMSprop(lr=5e-6, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) + self.src_dst_mask_opt = RMSprop(lr=5e-6, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) + self.D_opt = RMSprop(lr=5e-6, lr_dropout=lr_dropout, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1) src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) ) src_loss += K.mean ( 10*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )