mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
initial code to extract umdfaces.io dataset and train pose estimator
This commit is contained in:
parent
51a917facc
commit
e58197ca22
18 changed files with 437 additions and 57 deletions
108
models/Model_DEV_POSEEST/Model.py
Normal file
108
models/Model_DEV_POSEEST/Model.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
import numpy as np
|
||||
|
||||
from nnlib import nnlib
|
||||
from models import ModelBase
|
||||
from facelib import FaceType
|
||||
from facelib import PoseEstimator
|
||||
from samplelib import *
|
||||
from interact import interact as io
|
||||
import imagelib
|
||||
|
||||
class Model(ModelBase):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs,
|
||||
ask_write_preview_history=False,
|
||||
ask_target_iter=False,
|
||||
ask_sort_by_yaw=False,
|
||||
ask_random_flip=False,
|
||||
ask_src_scale_mod=False)
|
||||
|
||||
#override
|
||||
def onInitializeOptions(self, is_first_run, ask_override):
|
||||
default_face_type = 'f'
|
||||
if is_first_run:
|
||||
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="Half face has better resolution, but covers less area of cheeks.").lower()
|
||||
else:
|
||||
self.options['face_type'] = self.options.get('face_type', default_face_type)
|
||||
|
||||
#override
|
||||
def onInitialize(self):
|
||||
exec(nnlib.import_all(), locals(), globals())
|
||||
self.set_vram_batch_requirements( {4:64} )
|
||||
|
||||
self.resolution = 227
|
||||
self.face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
|
||||
|
||||
|
||||
self.pose_est = PoseEstimator(self.resolution,
|
||||
FaceType.toString(self.face_type),
|
||||
load_weights=not self.is_first_run(),
|
||||
weights_file_root=self.get_model_root_path(),
|
||||
training=True)
|
||||
|
||||
if self.is_training_mode:
|
||||
f = SampleProcessor.TypeFlags
|
||||
face_type = f.FACE_TYPE_FULL if self.options['face_type'] == 'f' else f.FACE_TYPE_HALF
|
||||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options( motion_blur = [25, 1] ), #random_flip=True,
|
||||
output_sample_types=[ [f.TRANSFORMED | face_type | f.MODE_BGR_SHUFFLE | f.OPT_APPLY_MOTION_BLUR, self.resolution],
|
||||
[f.PITCH_YAW_ROLL],
|
||||
]),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(), #random_flip=True,
|
||||
output_sample_types=[ [f.TRANSFORMED | face_type | f.MODE_BGR_SHUFFLE, self.resolution],
|
||||
[f.PITCH_YAW_ROLL],
|
||||
])
|
||||
])
|
||||
|
||||
#override
|
||||
def onSave(self):
|
||||
self.pose_est.save_weights()
|
||||
|
||||
#override
|
||||
def onTrainOneIter(self, generators_samples, generators_list):
|
||||
target_src, pitch_yaw_roll = generators_samples[0]
|
||||
|
||||
loss = self.pose_est.train_on_batch( target_src, pitch_yaw_roll )
|
||||
|
||||
return ( ('loss', loss), )
|
||||
|
||||
#override
|
||||
def onGetPreview(self, generators_samples):
|
||||
test_src = generators_samples[0][0][0:4] #first 4 samples
|
||||
test_pyr_src = generators_samples[0][1][0:4]
|
||||
test_dst = generators_samples[1][0][0:4]
|
||||
test_pyr_dst = generators_samples[1][1][0:4]
|
||||
|
||||
h,w,c = self.resolution,self.resolution,3
|
||||
h_line = 13
|
||||
|
||||
result = []
|
||||
for name, img, pyr in [ ['training data', test_src, test_pyr_src], \
|
||||
['evaluating data',test_dst, test_pyr_dst] ]:
|
||||
pyr_pred = self.pose_est.extract(img)
|
||||
|
||||
hor_imgs = []
|
||||
for i in range(len(img)):
|
||||
img_info = np.ones ( (h,w,c) ) * 0.1
|
||||
lines = ["%s" % ( str(pyr[i]) ),
|
||||
"%s" % ( str(pyr_pred[i]) ) ]
|
||||
|
||||
lines_count = len(lines)
|
||||
for ln in range(lines_count):
|
||||
img_info[ ln*h_line:(ln+1)*h_line, 0:w] += \
|
||||
imagelib.get_text_image ( (h_line,w,c), lines[ln], color=[0.8]*c )
|
||||
|
||||
hor_imgs.append ( np.concatenate ( (
|
||||
img[i,:,:,0:3],
|
||||
img_info
|
||||
), axis=1) )
|
||||
|
||||
|
||||
result += [ (name, np.concatenate (hor_imgs, axis=0)) ]
|
||||
|
||||
return result
|
Loading…
Add table
Add a link
Reference in a new issue