added ability to save optimizers states which work with K.function,

added custom Adam that can save 'iterations' param
This commit is contained in:
iperov 2019-03-11 18:23:01 +04:00
parent e50dc0d748
commit e4637336ef
3 changed files with 133 additions and 26 deletions

View file

@ -1,4 +1,5 @@
import os
import json
import time
import inspect
import pickle
@ -119,6 +120,7 @@ class ModelBase(object):
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.onInitialize()
@ -271,25 +273,52 @@ class ModelBase(object):
}
self.model_data_path.write_bytes( pickle.dumps(model_data) )
def load_weights_safe(self, model_filename_list):
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
if Path(filename).exists():
if Path(filename).exists():
model.load_weights(filename)
def save_weights_safe(self, model_filename_list):
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
if Path(opt_filename).exists():
h5dict = self.keras.utils.io_utils.H5Dict(opt_filename, mode='r')
try:
for x in optimizer_filename_list:
opt, filename = x
if filename in h5dict:
opt = opt.__class__.from_config( json.loads(h5dict[filename]) )
x[0] = opt
finally:
h5dict.close()
return [x[0] for x in optimizer_filename_list]
def save_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
model.save_weights( filename + '.tmp' )
for model, filename in model_filename_list:
rename_list = model_filename_list
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
h5dict = self.keras.utils.io_utils.H5Dict(opt_filename + '.tmp', mode='w')
try:
for opt, filename in optimizer_filename_list:
h5dict[filename] = json.dumps(opt.get_config())
finally:
h5dict.close()
rename_list += [('', 'opt.h5')]
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)
source_filename = Path(filename+'.tmp')
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
if source_filename.exists():
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
def debug_one_epoch(self):
images = []

View file

@ -84,7 +84,6 @@ class SAEModel(ModelBase):
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
SAEModel.initialize_nn_functions()
self.set_vram_batch_requirements({1.5:4})
resolution = self.options['resolution']
@ -111,6 +110,7 @@ class SAEModel(ModelBase):
target_dst_ar = [ Input ( ( bgr_shape[0] // (2**i) ,)*2 + (bgr_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
target_dstm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
weights_to_load = []
if self.options['archi'] == 'liae':
self.encoder = modelify(SAEModel.LIAEEncFlow(resolution, self.options['lighter_encoder'], ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
@ -223,8 +223,13 @@ class SAEModel(ModelBase):
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
pred_src_dstm = self.decoder_srcm(warped_dst_code)
self.load_weights_safe(weights_to_load)
self.src_dst_opt, \
self.src_dst_mask_opt = self.load_weights_safe(
weights_to_load,
[ [Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 'src_dst_opt'],
[Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 'src_dst_mask_opt']
])
pred_src_src, pred_dst_dst, pred_src_dst, = [ [x] if type(x) != list else x for x in [pred_src_src, pred_dst_dst, pred_src_dst, ] ]
if self.options['learn_mask']:
@ -262,9 +267,6 @@ class SAEModel(ModelBase):
psd_target_dst_anti_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
if self.is_training_mode:
def optimizer():
return Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
if self.options['archi'] == 'liae':
src_dst_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
if self.options['learn_mask']:
@ -307,7 +309,7 @@ class SAEModel(ModelBase):
feed += target_dst_ar[::-1]
feed += target_dstm_ar[::-1]
self.src_dst_train = K.function (feed,[src_loss,dst_loss], optimizer().get_updates(src_loss+dst_loss, src_dst_loss_train_weights) )
self.src_dst_train = K.function (feed,[src_loss,dst_loss], self.src_dst_opt.get_updates(src_loss+dst_loss, src_dst_loss_train_weights) )
if self.options['learn_mask']:
src_mask_loss = sum([ K.mean(K.square(target_srcm_ar[-1]-pred_src_srcm[-1])) for i in range(len(target_srcm_ar)) ])
@ -317,7 +319,7 @@ class SAEModel(ModelBase):
feed += target_srcm_ar[::-1]
feed += target_dstm_ar[::-1]
self.src_dst_mask_train = K.function (feed,[src_mask_loss, dst_mask_loss], optimizer().get_updates(src_mask_loss+dst_mask_loss, src_dst_mask_loss_train_weights) )
self.src_dst_mask_train = K.function (feed,[src_mask_loss, dst_mask_loss], self.src_dst_mask_opt.get_updates(src_mask_loss+dst_mask_loss, src_dst_mask_loss_train_weights) )
if self.options['learn_mask']:
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1], pred_src_dstm[-1]])
@ -353,8 +355,12 @@ class SAEModel(ModelBase):
])
#override
def onSave(self):
opt_ar = [ [self.src_dst_opt, 'src_dst_opt'],
[self.src_dst_mask_opt, 'src_dst_mask_opt']
]
ar = []
if self.options['archi'] == 'liae':
ar = [[self.encoder, 'encoder.h5'],
ar += [[self.encoder, 'encoder.h5'],
[self.inter_B, 'inter_B.h5'],
[self.inter_AB, 'inter_AB.h5'],
[self.decoder, 'decoder.h5']
@ -362,15 +368,15 @@ class SAEModel(ModelBase):
if self.options['learn_mask']:
ar += [ [self.decoderm, 'decoderm.h5'] ]
elif self.options['archi'] == 'df' or self.options['archi'] == 'vg':
ar = [[self.encoder, 'encoder.h5'],
ar += [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
if self.options['learn_mask']:
ar += [ [self.decoder_srcm, 'decoder_srcm.h5'],
[self.decoder_dstm, 'decoder_dstm.h5'] ]
self.save_weights_safe(ar)
self.save_weights_safe(ar, opt_ar)
#override

View file

@ -71,17 +71,18 @@ ZeroPadding2D = keras.layers.ZeroPadding2D
RandomNormal = keras.initializers.RandomNormal
Model = keras.models.Model
Adam = keras.optimizers.Adam
#Adam = keras.optimizers.Adam
Adam = nnlib.Adam
modelify = nnlib.modelify
gaussian_blur = nnlib.gaussian_blur
style_loss = nnlib.style_loss
dssim = nnlib.dssim
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
#ReflectionPadding2D = nnlib.ReflectionPadding2D
#AddUniformNoise = nnlib.AddUniformNoise
"""
@ -181,7 +182,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if device_config.use_fp16:
nnlib.keras.backend.set_floatx('float16')
if "tensorflow" in device_config.backend:
nnlib.keras.backend.set_session(nnlib.tf_sess)
@ -432,7 +433,78 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
base_config = super(Scale, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
class Adam(keras.optimizers.Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False, iterations=0, **kwargs):
super(Adam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(iterations, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
@keras.legacy.interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1) for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
if self.amsgrad:
vhat_t = K.maximum(vhat, v_t)
p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
self.updates.append(K.update(vhat, vhat_t))
else:
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'iterations': int(K.get_value(self.iterations)),
'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon,
'amsgrad': self.amsgrad}
base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Adam = Adam
'''
not implemented in plaidML
class ReflectionPadding2D(keras.layers.Layer):