added ability to save optimizers states which work with K.function,

added custom Adam that can save 'iterations' param
This commit is contained in:
iperov 2019-03-11 18:23:01 +04:00
commit e4637336ef
3 changed files with 133 additions and 26 deletions

View file

@ -1,4 +1,5 @@
import os
import json
import time
import inspect
import pickle
@ -119,6 +120,7 @@ class ModelBase(object):
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.onInitialize()
@ -271,25 +273,52 @@ class ModelBase(object):
}
self.model_data_path.write_bytes( pickle.dumps(model_data) )
def load_weights_safe(self, model_filename_list):
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
if Path(filename).exists():
if Path(filename).exists():
model.load_weights(filename)
def save_weights_safe(self, model_filename_list):
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
if Path(opt_filename).exists():
h5dict = self.keras.utils.io_utils.H5Dict(opt_filename, mode='r')
try:
for x in optimizer_filename_list:
opt, filename = x
if filename in h5dict:
opt = opt.__class__.from_config( json.loads(h5dict[filename]) )
x[0] = opt
finally:
h5dict.close()
return [x[0] for x in optimizer_filename_list]
def save_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
model.save_weights( filename + '.tmp' )
for model, filename in model_filename_list:
rename_list = model_filename_list
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
h5dict = self.keras.utils.io_utils.H5Dict(opt_filename + '.tmp', mode='w')
try:
for opt, filename in optimizer_filename_list:
h5dict[filename] = json.dumps(opt.get_config())
finally:
h5dict.close()
rename_list += [('', 'opt.h5')]
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)
source_filename = Path(filename+'.tmp')
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
if source_filename.exists():
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
def debug_one_epoch(self):
images = []

View file

@ -84,7 +84,6 @@ class SAEModel(ModelBase):
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
SAEModel.initialize_nn_functions()
self.set_vram_batch_requirements({1.5:4})
resolution = self.options['resolution']
@ -111,6 +110,7 @@ class SAEModel(ModelBase):
target_dst_ar = [ Input ( ( bgr_shape[0] // (2**i) ,)*2 + (bgr_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
target_dstm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
weights_to_load = []
if self.options['archi'] == 'liae':
self.encoder = modelify(SAEModel.LIAEEncFlow(resolution, self.options['lighter_encoder'], ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
@ -223,8 +223,13 @@ class SAEModel(ModelBase):
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
pred_src_dstm = self.decoder_srcm(warped_dst_code)
self.load_weights_safe(weights_to_load)
self.src_dst_opt, \
self.src_dst_mask_opt = self.load_weights_safe(
weights_to_load,
[ [Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 'src_dst_opt'],
[Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), 'src_dst_mask_opt']
])
pred_src_src, pred_dst_dst, pred_src_dst, = [ [x] if type(x) != list else x for x in [pred_src_src, pred_dst_dst, pred_src_dst, ] ]
if self.options['learn_mask']:
@ -262,9 +267,6 @@ class SAEModel(ModelBase):
psd_target_dst_anti_masked_ar = [ pred_src_dst_sigm_ar[i]*target_dstm_anti_sigm_ar[i] for i in range(len(pred_src_dst_sigm_ar))]
if self.is_training_mode:
def optimizer():
return Adam(lr=5e-5, beta_1=0.5, beta_2=0.999)
if self.options['archi'] == 'liae':
src_dst_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
if self.options['learn_mask']:
@ -307,7 +309,7 @@ class SAEModel(ModelBase):
feed += target_dst_ar[::-1]
feed += target_dstm_ar[::-1]
self.src_dst_train = K.function (feed,[src_loss,dst_loss], optimizer().get_updates(src_loss+dst_loss, src_dst_loss_train_weights) )
self.src_dst_train = K.function (feed,[src_loss,dst_loss], self.src_dst_opt.get_updates(src_loss+dst_loss, src_dst_loss_train_weights) )
if self.options['learn_mask']:
src_mask_loss = sum([ K.mean(K.square(target_srcm_ar[-1]-pred_src_srcm[-1])) for i in range(len(target_srcm_ar)) ])
@ -317,7 +319,7 @@ class SAEModel(ModelBase):
feed += target_srcm_ar[::-1]
feed += target_dstm_ar[::-1]
self.src_dst_mask_train = K.function (feed,[src_mask_loss, dst_mask_loss], optimizer().get_updates(src_mask_loss+dst_mask_loss, src_dst_mask_loss_train_weights) )
self.src_dst_mask_train = K.function (feed,[src_mask_loss, dst_mask_loss], self.src_dst_mask_opt.get_updates(src_mask_loss+dst_mask_loss, src_dst_mask_loss_train_weights) )
if self.options['learn_mask']:
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1], pred_src_dstm[-1]])
@ -353,8 +355,12 @@ class SAEModel(ModelBase):
])
#override
def onSave(self):
opt_ar = [ [self.src_dst_opt, 'src_dst_opt'],
[self.src_dst_mask_opt, 'src_dst_mask_opt']
]
ar = []
if self.options['archi'] == 'liae':
ar = [[self.encoder, 'encoder.h5'],
ar += [[self.encoder, 'encoder.h5'],
[self.inter_B, 'inter_B.h5'],
[self.inter_AB, 'inter_AB.h5'],
[self.decoder, 'decoder.h5']
@ -362,15 +368,15 @@ class SAEModel(ModelBase):
if self.options['learn_mask']:
ar += [ [self.decoderm, 'decoderm.h5'] ]
elif self.options['archi'] == 'df' or self.options['archi'] == 'vg':
ar = [[self.encoder, 'encoder.h5'],
ar += [[self.encoder, 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5']
]
if self.options['learn_mask']:
ar += [ [self.decoder_srcm, 'decoder_srcm.h5'],
[self.decoder_dstm, 'decoder_dstm.h5'] ]
self.save_weights_safe(ar)
self.save_weights_safe(ar, opt_ar)
#override