mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
SAE: increased speed of training by 10-18%,
increased clipping border mask in full face mode results better transition of cheeks, default archi now 'df'
This commit is contained in:
parent
41abda42d2
commit
e226ab5385
2 changed files with 65 additions and 70 deletions
|
@ -15,14 +15,14 @@ class ConverterMasked(ConverterBase):
|
|||
face_type=FaceType.FULL,
|
||||
base_erode_mask_modifier = 0,
|
||||
base_blur_mask_modifier = 0,
|
||||
clip_border_mask_per = 0,
|
||||
clip_hborder_mask_per = 0,
|
||||
**in_options):
|
||||
|
||||
super().__init__(predictor)
|
||||
self.predictor_input_size = predictor_input_size
|
||||
self.output_size = output_size
|
||||
self.face_type = face_type
|
||||
self.clip_border_mask_per = clip_border_mask_per
|
||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||
self.TFLabConverter = None
|
||||
|
||||
mode = input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless (default), (5) seamless hist match, (6) raw : ", 4)
|
||||
|
@ -155,6 +155,7 @@ class ConverterMasked(ConverterBase):
|
|||
print ("lowest_len = %f" % (lowest_len) )
|
||||
|
||||
img_mask_blurry_aaa = img_face_mask_aaa
|
||||
|
||||
if self.erode_mask_modifier != 0:
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
||||
if debug:
|
||||
|
@ -173,6 +174,18 @@ class ConverterMasked(ConverterBase):
|
|||
elif ero < 0:
|
||||
img_face_mask_flatten_aaa = cv2.dilate(img_face_mask_flatten_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
|
||||
if self.clip_hborder_mask_per > 0: #clip hborder before blur
|
||||
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
|
||||
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per )
|
||||
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
|
||||
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
||||
img_mask_blurry_aaa *= img_prd_hborder_rect_mask_a
|
||||
if debug:
|
||||
debugs += [img_mask_blurry_aaa.copy()]
|
||||
|
||||
if self.blur_mask_modifier > 0:
|
||||
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
||||
|
@ -183,15 +196,8 @@ class ConverterMasked(ConverterBase):
|
|||
|
||||
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
||||
|
||||
if self.clip_border_mask_per > 0:
|
||||
prd_border_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
|
||||
prd_border_size = int ( prd_border_rect_mask_a.shape[1] * self.clip_border_mask_per )
|
||||
|
||||
prd_border_rect_mask_a[0:prd_border_size,:,:] = 0
|
||||
prd_border_rect_mask_a[-prd_border_size:,:,:] = 0
|
||||
prd_border_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
prd_border_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
prd_border_rect_mask_a = np.expand_dims(cv2.blur(prd_border_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
if debug:
|
||||
debugs += [img_mask_blurry_aaa.copy()]
|
||||
|
||||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
|
@ -221,7 +227,6 @@ class ConverterMasked(ConverterBase):
|
|||
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
debugs += [img_mask_blurry_aaa.copy()]
|
||||
|
||||
if self.mode == 'overlay':
|
||||
pass
|
||||
|
@ -237,11 +242,6 @@ class ConverterMasked(ConverterBase):
|
|||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
if self.clip_border_mask_per > 0:
|
||||
img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
|
||||
img_mask_blurry_aaa *= img_prd_border_rect_mask_a
|
||||
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
if self.mode == 'seamless-hist-match':
|
||||
|
|
|
@ -23,7 +23,7 @@ class SAEModel(ModelBase):
|
|||
#override
|
||||
def onInitializeOptions(self, is_first_run, ask_override):
|
||||
default_resolution = 128
|
||||
default_archi = 'liae'
|
||||
default_archi = 'df'
|
||||
default_face_type = 'f'
|
||||
|
||||
if is_first_run:
|
||||
|
@ -115,28 +115,25 @@ class SAEModel(ModelBase):
|
|||
self.decoderm.load_weights (self.get_strpath_storage_for_file(self.decodermH5))
|
||||
|
||||
warped_src_code = self.encoder (warped_src)
|
||||
|
||||
warped_src_inter_AB_code = self.inter_AB (warped_src_code)
|
||||
warped_src_inter_code = Concatenate()([warped_src_inter_AB_code,warped_src_inter_AB_code])
|
||||
|
||||
pred_src_src = self.decoder(warped_src_inter_code)
|
||||
if self.options['learn_mask']:
|
||||
pred_src_srcm = self.decoderm(warped_src_inter_code)
|
||||
|
||||
warped_dst_code = self.encoder (warped_dst)
|
||||
warped_dst_inter_B_code = self.inter_B (warped_dst_code)
|
||||
warped_dst_inter_AB_code = self.inter_AB (warped_dst_code)
|
||||
warped_dst_inter_code = Concatenate()([warped_dst_inter_B_code,warped_dst_inter_AB_code])
|
||||
pred_dst_dst = self.decoder(warped_dst_inter_code)
|
||||
|
||||
if self.options['learn_mask']:
|
||||
pred_dst_dstm = self.decoderm(warped_dst_inter_code)
|
||||
|
||||
warped_src_dst_inter_code = Concatenate()([warped_dst_inter_AB_code,warped_dst_inter_AB_code])
|
||||
|
||||
pred_src_src = self.decoder(warped_src_inter_code)
|
||||
pred_dst_dst = self.decoder(warped_dst_inter_code)
|
||||
pred_src_dst = self.decoder(warped_src_dst_inter_code)
|
||||
|
||||
if self.options['learn_mask']:
|
||||
pred_src_srcm = self.decoderm(warped_src_inter_code)
|
||||
pred_dst_dstm = self.decoderm(warped_dst_inter_code)
|
||||
pred_src_dstm = self.decoderm(warped_src_dst_inter_code)
|
||||
|
||||
else:
|
||||
self.encoder = modelify(SAEModel.DFEncFlow(resolution, adapt_k_size, self.options['lighter_encoder'], ae_dims=ae_dims, ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
|
||||
|
||||
|
@ -162,11 +159,13 @@ class SAEModel(ModelBase):
|
|||
pred_src_src = self.decoder_src(warped_src_code)
|
||||
pred_dst_dst = self.decoder_dst(warped_dst_code)
|
||||
pred_src_dst = self.decoder_src(warped_dst_code)
|
||||
|
||||
if self.options['learn_mask']:
|
||||
pred_src_srcm = self.decoder_srcm(warped_src_code)
|
||||
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
|
||||
pred_src_dstm = self.decoder_srcm(warped_dst_code)
|
||||
|
||||
|
||||
ms_count = len(pred_src_src)
|
||||
|
||||
target_src_ar = [ target_src if i == 0 else tf.image.resize_bicubic( target_src, (resolution // (2**i) ,)*2 ) for i in range(ms_count-1, -1, -1)]
|
||||
|
@ -202,17 +201,13 @@ class SAEModel(ModelBase):
|
|||
|
||||
|
||||
if self.options['archi'] == 'liae':
|
||||
src_loss_train_weights = self.encoder.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
|
||||
dst_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
|
||||
src_dst_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
|
||||
if self.options['learn_mask']:
|
||||
src_mask_loss_train_weights = self.encoder.trainable_weights + self.inter_AB.trainable_weights + self.decoderm.trainable_weights
|
||||
dst_mask_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoderm.trainable_weights
|
||||
src_dst_mask_loss_train_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoderm.trainable_weights
|
||||
else:
|
||||
src_loss_train_weights = self.encoder.trainable_weights + self.decoder_src.trainable_weights
|
||||
dst_loss_train_weights = self.encoder.trainable_weights + self.decoder_dst.trainable_weights
|
||||
src_dst_loss_train_weights = self.encoder.trainable_weights + self.decoder_src.trainable_weights + self.decoder_dst.trainable_weights
|
||||
if self.options['learn_mask']:
|
||||
src_mask_loss_train_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights
|
||||
dst_mask_loss_train_weights = self.encoder.trainable_weights + self.decoder_dstm.trainable_weights
|
||||
src_dst_mask_loss_train_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights + self.decoder_dstm.trainable_weights
|
||||
|
||||
if self.options['pixel_loss']:
|
||||
src_loss = sum([ K.mean( 100*K.square( target_src_masked_ar[i] - pred_src_src_sigm_ar[i] * target_srcm_sigm_ar[i] )) for i in range(len(target_src_masked_ar)) ])
|
||||
|
@ -230,22 +225,22 @@ class SAEModel(ModelBase):
|
|||
else:
|
||||
src_loss += K.mean( (100*bg_style_power)*K.square(tf_dssim(2.0)( psd_target_dst_anti_masked_ar[-1], target_dst_anti_masked_ar[-1] )))
|
||||
|
||||
self.src_train = K.function ([warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm ],[src_loss], optimizer().get_updates(src_loss, src_loss_train_weights) )
|
||||
|
||||
if self.options['pixel_loss']:
|
||||
dst_loss = sum([ K.mean( 100*K.square( target_dst_masked_ar[i] - pred_dst_dst_sigm_ar[i] * target_dstm_sigm_ar[i] )) for i in range(len(target_dst_masked_ar)) ])
|
||||
else:
|
||||
dst_loss = sum([ K.mean( 100*K.square(tf_dssim(2.0)( target_dst_masked_ar[i], pred_dst_dst_sigm_ar[i] * target_dstm_sigm_ar[i] ) )) for i in range(len(target_dst_masked_ar)) ])
|
||||
|
||||
self.dst_train = K.function ([warped_dst, target_dst, target_dstm ],[dst_loss], optimizer().get_updates(dst_loss, dst_loss_train_weights) )
|
||||
self.src_dst_train = K.function ([warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm ],[src_loss,dst_loss], optimizer().get_updates(src_loss+dst_loss, src_dst_loss_train_weights) )
|
||||
|
||||
|
||||
if self.options['learn_mask']:
|
||||
src_mask_loss = sum([ K.mean(K.square(target_srcm_ar[i]-pred_src_srcm[i])) for i in range(len(target_srcm_ar)) ])
|
||||
self.src_mask_train = K.function ([warped_src, target_srcm],[src_mask_loss], optimizer().get_updates(src_mask_loss, src_mask_loss_train_weights) )
|
||||
|
||||
dst_mask_loss = sum([ K.mean(K.square(target_dstm_ar[i]-pred_dst_dstm[i])) for i in range(len(target_dstm_ar)) ])
|
||||
self.dst_mask_train = K.function ([warped_dst, target_dstm],[dst_mask_loss], optimizer().get_updates(dst_mask_loss, dst_mask_loss_train_weights) )
|
||||
self.src_dst_mask_train = K.function ([warped_src, target_srcm, warped_dst, target_dstm],[src_mask_loss, dst_mask_loss], optimizer().get_updates(src_mask_loss+dst_mask_loss, src_dst_mask_loss_train_weights) )
|
||||
|
||||
if self.options['learn_mask']:
|
||||
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1], pred_src_dstm[-1]])
|
||||
else:
|
||||
self.AE_view = K.function ([warped_src, warped_dst], [pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1] ] )
|
||||
|
||||
else:
|
||||
|
@ -299,12 +294,10 @@ class SAEModel(ModelBase):
|
|||
warped_src, target_src, target_src_mask = sample[0]
|
||||
warped_dst, target_dst, target_dst_mask = sample[1]
|
||||
|
||||
src_loss, = self.src_train ([warped_src, target_src, target_src_mask, warped_dst, target_dst, target_dst_mask])
|
||||
dst_loss, = self.dst_train ([warped_dst, target_dst, target_dst_mask])
|
||||
src_loss, dst_loss = self.src_dst_train ([warped_src, target_src, target_src_mask, warped_dst, target_dst, target_dst_mask])
|
||||
|
||||
if self.options['learn_mask']:
|
||||
src_mask_loss, = self.src_mask_train ([warped_src, target_src_mask])
|
||||
dst_mask_loss, = self.dst_mask_train ([warped_dst, target_dst_mask])
|
||||
src_mask_loss, dst_mask_loss, = self.src_dst_mask_train ([warped_src, target_src_mask, warped_dst, target_dst_mask])
|
||||
|
||||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss) )
|
||||
|
||||
|
@ -316,18 +309,20 @@ class SAEModel(ModelBase):
|
|||
test_B = sample[1][1][0:4]
|
||||
test_B_m = sample[1][2][0:4]
|
||||
|
||||
if self.options['learn_mask']:
|
||||
S, D, SS, DD, SD, SDM = [ x / 2 + 0.5 for x in ([test_A,test_B] + self.AE_view ([test_A, test_B]) ) ]
|
||||
SDM, = [ np.repeat (x, (3,), -1) for x in [SDM] ]
|
||||
else:
|
||||
S, D, SS, DD, SD, = [ x / 2 + 0.5 for x in ([test_A,test_B] + self.AE_view ([test_A, test_B]) ) ]
|
||||
#SM, DM, SDM = [ np.repeat (x, (3,), -1) for x in [SM, DM, SDM] ]
|
||||
|
||||
st_x3 = []
|
||||
st = []
|
||||
for i in range(0, len(test_A)):
|
||||
st_x3.append ( np.concatenate ( (
|
||||
S[i], SS[i], #SM[i],
|
||||
D[i], DD[i], #DM[i],
|
||||
SD[i], #SDM[i]
|
||||
), axis=1) )
|
||||
ar = S[i], SS[i], D[i], DD[i], SD[i]
|
||||
if self.options['learn_mask']:
|
||||
ar += (SDM[i],)
|
||||
st.append ( np.concatenate ( ar, axis=1) )
|
||||
|
||||
return [ ('SAE', np.concatenate (st_x3, axis=0 )), ]
|
||||
return [ ('SAE', np.concatenate (st, axis=0 )), ]
|
||||
|
||||
def predictor_func (self, face):
|
||||
face_tanh = face * 2.0 - 1.0
|
||||
|
@ -354,7 +349,7 @@ class SAEModel(ModelBase):
|
|||
face_type=face_type,
|
||||
base_erode_mask_modifier=base_erode_mask_modifier,
|
||||
base_blur_mask_modifier=base_blur_mask_modifier,
|
||||
clip_border_mask_per=0.03125,
|
||||
clip_hborder_mask_per=0.0625 if self.options['face_type'] == 'f' else 0,
|
||||
**in_options)
|
||||
|
||||
@staticmethod
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue