diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 79ffa30..8618d6f 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -57,6 +57,7 @@ class SAEHDModel(ModelBase): default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True) default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False) + default_random_noise = self.options['random_noise'] = self.load_or_def_option('random_noise', False) default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0) default_true_face_power = self.options['true_face_power'] = self.load_or_def_option('true_face_power', 0.0) default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0) @@ -161,7 +162,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.") self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="") - # self.options['random_noise'] = io.input_bool("Enable random noise added to samples", False, help_message="") + self.options['random_noise'] = io.input_bool("Enable random noise added to samples", False, help_message="") # self.options['random_blur'] = io.input_bool("Enable random blur of samples", False, help_message="") # self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", False, help_message="") @@ -751,7 +752,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.set_training_data_generators ([ SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options(random_flip=self.random_flip), - output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'random_downsample': self.options['random_downsample'], 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, + 'random_downsample': self.options['random_downsample'], + 'random_noise': self.options['random_noise'], + 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, + 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, @@ -761,7 +766,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options(random_flip=self.random_flip), - output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'random_downsample': self.options['random_downsample'], 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, + 'random_downsample': self.options['random_downsample'], + 'random_noise': self.options['random_noise'], + 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, + 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, diff --git a/samplelib/SampleProcessor.py b/samplelib/SampleProcessor.py index 1f1b96f..c20f628 100644 --- a/samplelib/SampleProcessor.py +++ b/samplelib/SampleProcessor.py @@ -113,6 +113,7 @@ class SampleProcessor(object): warp = opts.get('warp', False) transform = opts.get('transform', False) random_downsample = opts.get('random_downsample', False) + random_noise = opts.get('random_noise', False) motion_blur = opts.get('motion_blur', None) gaussian_blur = opts.get('gaussian_blur', None) random_bilinear_resize = opts.get('random_bilinear_resize', None) @@ -220,6 +221,24 @@ class SampleProcessor(object): img = cv2.resize(img, (down_res, down_res), interpolation=cv2.INTER_CUBIC) img = cv2.resize(img, (resolution, resolution), interpolation=cv2.INTER_CUBIC) + # Apply random noise + if random_noise: + noise_type = np.random.choice(['gaussian', 'laplace', 'poisson']) + noise_scale = (20 * np.random.random() + 20) / 255.0 + + if noise_type == 'gaussian': + noise = np.random.normal(scale=noise_scale, size=img.shape) + img += noise + elif noise_type == 'laplace': + # noise = np.random.laplace(scale=noise_scale, size=img.shape) + # img += noise + pass + elif noise_type == 'poisson': + # noise_lam = (15 * np.random.random() + 15) + # noise = np.random.poisson(lam=noise_lam, size=img.shape) + # img += noise + pass + img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate) img = np.clip(img.astype(np.float32), 0, 1)