mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
SAE : WARNING, RETRAIN IS REQUIRED !
fixed model sizes from previous update. avoided bug in ML framework(keras) that forces to train the model on random noise. Converter: added blur on the same keys as sharpness Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT Model produces near zero morphing and high detail face. Model has higher failure rate than other models. Keep src and dst faceset in same lighting conditions.
This commit is contained in:
parent
201b762541
commit
dc11ec32be
26 changed files with 1308 additions and 250 deletions
|
@ -19,7 +19,11 @@ class SampleLoader:
|
|||
cache = dict()
|
||||
|
||||
@staticmethod
|
||||
def load(sample_type, samples_path, target_samples_path=None):
|
||||
def get_person_id_max_count(samples_path):
|
||||
return len ( Path_utils.get_all_dir_names(samples_path) )
|
||||
|
||||
@staticmethod
|
||||
def load(sample_type, samples_path, target_samples_path=None, person_id_mode=False):
|
||||
cache = SampleLoader.cache
|
||||
|
||||
if str(samples_path) not in cache.keys():
|
||||
|
@ -30,10 +34,16 @@ class SampleLoader:
|
|||
if sample_type == SampleType.IMAGE:
|
||||
if datas[sample_type] is None:
|
||||
datas[sample_type] = [ Sample(filename=filename) for filename in io.progress_bar_generator( Path_utils.get_image_paths(samples_path), "Loading") ]
|
||||
|
||||
elif sample_type == SampleType.FACE:
|
||||
if datas[sample_type] is None:
|
||||
datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
|
||||
if person_id_mode:
|
||||
dir_names = Path_utils.get_all_dir_names(samples_path)
|
||||
all_samples = []
|
||||
for i, dir_name in io.progress_bar_generator( [*enumerate(dir_names)] , "Loading"):
|
||||
all_samples += SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename, person_id=i) for filename in Path_utils.get_image_paths( samples_path / dir_name ) ], silent=True )
|
||||
datas[sample_type] = all_samples
|
||||
else:
|
||||
datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
|
||||
|
||||
elif sample_type == SampleType.FACE_TEMPORAL_SORTED:
|
||||
if datas[sample_type] is None:
|
||||
|
@ -52,10 +62,10 @@ class SampleLoader:
|
|||
return datas[sample_type]
|
||||
|
||||
@staticmethod
|
||||
def upgradeToFaceSamples ( samples ):
|
||||
def upgradeToFaceSamples ( samples, silent=False ):
|
||||
sample_list = []
|
||||
|
||||
for s in io.progress_bar_generator(samples, "Loading"):
|
||||
for s in (samples if silent else io.progress_bar_generator(samples, "Loading")):
|
||||
s_filename_path = Path(s.filename)
|
||||
try:
|
||||
if s_filename_path.suffix == '.png':
|
||||
|
@ -68,13 +78,13 @@ class SampleLoader:
|
|||
if dflimg is None:
|
||||
print ("%s is not a dfl image file required for training" % (s_filename_path.name) )
|
||||
continue
|
||||
|
||||
|
||||
landmarks = dflimg.get_landmarks()
|
||||
pitch_yaw_roll = dflimg.get_pitch_yaw_roll()
|
||||
eyebrows_expand_mod = dflimg.get_eyebrows_expand_mod()
|
||||
|
||||
|
||||
if pitch_yaw_roll is None:
|
||||
pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(landmarks)
|
||||
pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(landmarks)
|
||||
|
||||
sample_list.append( s.copy_and_set(sample_type=SampleType.FACE,
|
||||
face_type=FaceType.fromString (dflimg.get_face_type()),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue