mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
SAE : WARNING, RETRAIN IS REQUIRED !
fixed model sizes from previous update. avoided bug in ML framework(keras) that forces to train the model on random noise. Converter: added blur on the same keys as sharpness Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT Model produces near zero morphing and high detail face. Model has higher failure rate than other models. Keep src and dst faceset in same lighting conditions.
This commit is contained in:
parent
201b762541
commit
dc11ec32be
26 changed files with 1308 additions and 250 deletions
|
@ -51,7 +51,7 @@ class SAEModel(ModelBase):
|
|||
default_e_ch_dims = 42
|
||||
default_d_ch_dims = default_e_ch_dims // 2
|
||||
def_ca_weights = False
|
||||
|
||||
|
||||
if is_first_run:
|
||||
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dims (32-1024 ?:help skip:%d) : " % (default_ae_dims) , default_ae_dims, help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
|
||||
self.options['e_ch_dims'] = np.clip ( io.input_int("Encoder dims per channel (21-85 ?:help skip:%d) : " % (default_e_ch_dims) , default_e_ch_dims, help_message="More encoder dims help to recognize more facial features, but require more VRAM. You can fine-tune model size to fit your GPU." ), 21, 85 )
|
||||
|
@ -133,15 +133,15 @@ class SAEModel(ModelBase):
|
|||
|
||||
def upscale (dim):
|
||||
def func(x):
|
||||
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same')(x)))
|
||||
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))))
|
||||
return func
|
||||
|
||||
def enc_flow(e_dims, ae_dims, lowest_dense_res):
|
||||
def func(x):
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
|
||||
x = Dense(ae_dims)(Flatten()(x))
|
||||
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
|
||||
|
@ -151,37 +151,37 @@ class SAEModel(ModelBase):
|
|||
return func
|
||||
|
||||
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
|
||||
dims = output_nc * d_ch_dims
|
||||
def ResidualBlock(dim):
|
||||
def func(inp):
|
||||
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
|
||||
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
|
||||
x = LeakyReLU(0.2)(x)
|
||||
x = Conv2D(dim, kernel_size=3, padding='same')(x)
|
||||
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(x))
|
||||
x = Add()([x, inp])
|
||||
x = LeakyReLU(0.2)(x)
|
||||
return x
|
||||
return func
|
||||
|
||||
def func(x):
|
||||
dims = output_nc * d_ch_dims
|
||||
x = upscale(dims*8)(x)
|
||||
|
||||
|
||||
if add_residual_blocks:
|
||||
x = ResidualBlock(dims*8)(x)
|
||||
x = ResidualBlock(dims*8)(x)
|
||||
|
||||
x = upscale(dims*4)(x)
|
||||
|
||||
|
||||
if add_residual_blocks:
|
||||
x = ResidualBlock(dims*4)(x)
|
||||
x = ResidualBlock(dims*4)(x)
|
||||
|
||||
x = upscale(dims*2)(x)
|
||||
|
||||
|
||||
if add_residual_blocks:
|
||||
x = ResidualBlock(dims*2)(x)
|
||||
x = ResidualBlock(dims*2)(x)
|
||||
|
||||
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x)
|
||||
return Conv2D(output_nc, kernel_size=5, padding='valid', activation='sigmoid')(ZeroPadding2D(2)(x))
|
||||
return func
|
||||
|
||||
self.encoder = modelify(enc_flow(e_dims, ae_dims, lowest_dense_res)) ( Input(bgr_shape) )
|
||||
|
@ -232,20 +232,20 @@ class SAEModel(ModelBase):
|
|||
mask_shape = (resolution, resolution, 1)
|
||||
|
||||
e_dims = output_nc*e_ch_dims
|
||||
d_dims = output_nc*d_ch_dims
|
||||
|
||||
lowest_dense_res = resolution // 16
|
||||
|
||||
def upscale (dim):
|
||||
def func(x):
|
||||
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same')(x)))
|
||||
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))))
|
||||
return func
|
||||
|
||||
def enc_flow(e_dims):
|
||||
def func(x):
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
|
||||
x = Flatten()(x)
|
||||
return x
|
||||
return func
|
||||
|
@ -259,12 +259,13 @@ class SAEModel(ModelBase):
|
|||
return x
|
||||
return func
|
||||
|
||||
def dec_flow(output_nc, d_dims):
|
||||
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
|
||||
d_dims = output_nc*d_ch_dims
|
||||
def ResidualBlock(dim):
|
||||
def func(inp):
|
||||
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
|
||||
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
|
||||
x = LeakyReLU(0.2)(x)
|
||||
x = Conv2D(dim, kernel_size=3, padding='same')(x)
|
||||
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
|
||||
x = Add()([x, inp])
|
||||
x = LeakyReLU(0.2)(x)
|
||||
return x
|
||||
|
@ -272,18 +273,24 @@ class SAEModel(ModelBase):
|
|||
|
||||
def func(x):
|
||||
x = upscale(d_dims*8)(x)
|
||||
x = ResidualBlock(d_dims*8)(x)
|
||||
x = ResidualBlock(d_dims*8)(x)
|
||||
|
||||
if add_residual_blocks:
|
||||
x = ResidualBlock(d_dims*8)(x)
|
||||
x = ResidualBlock(d_dims*8)(x)
|
||||
|
||||
x = upscale(d_dims*4)(x)
|
||||
x = ResidualBlock(d_dims*4)(x)
|
||||
x = ResidualBlock(d_dims*4)(x)
|
||||
|
||||
if add_residual_blocks:
|
||||
x = ResidualBlock(d_dims*4)(x)
|
||||
x = ResidualBlock(d_dims*4)(x)
|
||||
|
||||
x = upscale(d_dims*2)(x)
|
||||
x = ResidualBlock(d_dims*2)(x)
|
||||
x = ResidualBlock(d_dims*2)(x)
|
||||
|
||||
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x)
|
||||
if add_residual_blocks:
|
||||
x = ResidualBlock(d_dims*2)(x)
|
||||
x = ResidualBlock(d_dims*2)(x)
|
||||
|
||||
return Conv2D(output_nc, kernel_size=5, padding='valid', activation='sigmoid')(ZeroPadding2D(2)(x))
|
||||
return func
|
||||
|
||||
self.encoder = modelify(enc_flow(e_dims)) ( Input(bgr_shape) )
|
||||
|
@ -293,10 +300,10 @@ class SAEModel(ModelBase):
|
|||
self.inter_AB = modelify(inter_flow(lowest_dense_res, ae_dims)) ( Input(sh) )
|
||||
|
||||
sh = np.array(K.int_shape( self.inter_B.outputs[0] )[1:])*(1,1,2)
|
||||
self.decoder = modelify(dec_flow(output_nc, d_dims)) ( Input(sh) )
|
||||
self.decoder = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
|
||||
|
||||
if learn_mask:
|
||||
self.decoderm = modelify(dec_flow(1, d_dims)) ( Input(sh) )
|
||||
self.decoderm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
|
||||
|
||||
self.src_dst_trainable_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
|
||||
|
||||
|
@ -349,17 +356,17 @@ class SAEModel(ModelBase):
|
|||
loaded, not_loaded = self.load_weights_safe(not_loaded)
|
||||
|
||||
CA_models = []
|
||||
if self.options.get('ca_weights', False):
|
||||
if self.options.get('ca_weights', False):
|
||||
CA_models += [ model for model, _ in not_loaded ]
|
||||
|
||||
|
||||
CA_conv_weights_list = []
|
||||
for model in CA_models:
|
||||
for layer in model.layers:
|
||||
if type(layer) == keras.layers.Conv2D:
|
||||
CA_conv_weights_list += [layer.weights[0]] #- is Conv2D kernel_weights
|
||||
|
||||
|
||||
if len(CA_conv_weights_list) != 0:
|
||||
CAInitializerMP ( CA_conv_weights_list )
|
||||
CAInitializerMP ( CA_conv_weights_list )
|
||||
|
||||
warped_src = self.model.warped_src
|
||||
target_src = Input ( (resolution, resolution, 3) )
|
||||
|
@ -501,7 +508,7 @@ class SAEModel(ModelBase):
|
|||
if self.options['learn_mask']:
|
||||
feed = [ warped_src, warped_dst, target_srcm, target_dstm ]
|
||||
src_mask_loss, dst_mask_loss, = self.src_dst_mask_train (feed)
|
||||
|
||||
|
||||
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
||||
|
||||
#override
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue