SAE : WARNING, RETRAIN IS REQUIRED !

fixed model sizes from previous update.
avoided bug in ML framework(keras) that forces to train the model on random noise.

Converter: added blur on the same keys as sharpness

Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT
Model produces near zero morphing and high detail face.
Model has higher failure rate than other models.
Keep src and dst faceset in same lighting conditions.
This commit is contained in:
Colombo 2019-09-19 11:13:56 +04:00
commit dc11ec32be
26 changed files with 1308 additions and 250 deletions

View file

@ -23,7 +23,7 @@ You can implement your own model. Check examples.
class ModelBase(object):
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, pretraining_data_path=None, debug = False, device_args = None,
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, pretraining_data_path=None, is_training=False, debug = False, device_args = None,
ask_enable_autobackup=True,
ask_write_preview_history=True,
ask_target_iter=True,
@ -56,14 +56,8 @@ class ModelBase(object):
self.training_data_dst_path = training_data_dst_path
self.pretraining_data_path = pretraining_data_path
self.src_images_paths = None
self.dst_images_paths = None
self.src_yaw_images_paths = None
self.dst_yaw_images_paths = None
self.src_data_generator = None
self.dst_data_generator = None
self.debug = debug
self.is_training_mode = (training_data_src_path is not None and training_data_dst_path is not None)
self.is_training_mode = is_training
self.iter = 0
self.options = {}
@ -412,40 +406,60 @@ class ModelBase(object):
cv2_imwrite (filepath, img )
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
exec(nnlib.code_import_all, locals(), globals())
loaded = []
not_loaded = []
for mf in model_filename_list:
model, filename = mf
filename = self.get_strpath_storage_for_file(filename)
if Path(filename).exists():
loaded += [ mf ]
model.load_weights(filename)
if issubclass(model.__class__, keras.optimizers.Optimizer):
opt = model
try:
with open(filename, "rb") as f:
fd = pickle.loads(f.read())
weights = fd.get('weights', None)
if weights is not None:
opt.set_weights(weights)
except Exception as e:
print ("Unable to load ", filename)
else:
model.load_weights(filename)
else:
not_loaded += [ mf ]
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
if Path(opt_filename).exists():
try:
with open(opt_filename, "rb") as f:
d = pickle.loads(f.read())
for x in optimizer_filename_list:
opt, filename = x
if filename in d:
weights = d[filename].get('weights', None)
if weights:
opt.set_weights(weights)
print("set ok")
except Exception as e:
print ("Unable to load ", opt_filename)
return loaded, not_loaded
def save_weights_safe(self, model_filename_list):
exec(nnlib.code_import_all, locals(), globals())
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
model.save_weights( filename + '.tmp' )
filename = self.get_strpath_storage_for_file(filename) + '.tmp'
if issubclass(model.__class__, keras.optimizers.Optimizer):
opt = model
try:
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
with open(filename, 'wb') as f:
f.write( pickle.dumps(fd) )
except Exception as e:
print ("Unable to save ", filename)
else:
model.save_weights( filename)
rename_list = model_filename_list

View file

@ -0,0 +1,166 @@
from functools import partial
import cv2
import numpy as np
from facelib import FaceType
from interact import interact as io
from mathlib import get_power_of_two
from models import ModelBase
from nnlib import nnlib, FUNIT
from samplelib import *
class FUNITModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_sort_by_yaw=False,
ask_random_flip=False,
ask_src_scale_mod=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
default_face_type = 'f'
if is_first_run:
self.options['resolution'] = io.input_int("Resolution ( 128,224 ?:help skip:128) : ", 128, [128,224])
else:
self.options['resolution'] = self.options.get('resolution', 128)
if is_first_run:
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
self.set_vram_batch_requirements({4:16})
resolution = self.options['resolution']
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
person_id_max_count = SampleGeneratorFace.get_person_id_max_count(self.training_data_src_path)
self.model = FUNIT( face_type_str=FaceType.toString(face_type),
batch_size=self.batch_size,
encoder_nf=64,
encoder_downs=2,
encoder_res_blk=2,
class_downs=4,
class_nf=64,
class_latent=64,
mlp_nf=256,
mlp_blks=2,
dis_nf=64,
dis_res_blks=10,
num_classes=person_id_max_count,
subpixel_decoder=True,
initialize_weights=self.is_first_run(),
is_training=self.is_training_mode
)
if not self.is_first_run():
self.load_weights_safe(self.model.get_model_filename_list())
if self.is_training_mode:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
output_sample_types=[ {'types': (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':128, 'normalize_tanh':True} ]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types, person_id_mode=True ),
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types, person_id_mode=True ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types, person_id_mode=True ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types, person_id_mode=True ),
])
#override
def get_model_filename_list(self):
return self.model.get_model_filename_list()
#override
def onSave(self):
self.save_weights_safe(self.model.get_model_filename_list())
#override
def onTrainOneIter(self, generators_samples, generators_list):
xa,la = generators_samples[0]
xb,lb = generators_samples[1]
G_loss, D_loss = self.model.train(xa,la,xb,lb)
return ( ('G_loss', G_loss), ('D_loss', D_loss), )
#override
def onGetPreview(self, generators_samples):
xa = generators_samples[0][0]
xb = generators_samples[1][0]
ta = generators_samples[2][0]
tb = generators_samples[3][0]
view_samples = min(4, xa.shape[0])
lines_train = []
lines_test = []
for i in range(view_samples):
s_xa = self.model.get_average_class_code([ xa[i:i+1] ])[0][None,...]
s_xb = self.model.get_average_class_code([ xb[i:i+1] ])[0][None,...]
s_ta = self.model.get_average_class_code([ ta[i:i+1] ])[0][None,...]
s_tb = self.model.get_average_class_code([ tb[i:i+1] ])[0][None,...]
xaxa = self.model.convert ([ xa[i:i+1], s_xa ] )[0][0]
xbxb = self.model.convert ([ xb[i:i+1], s_xb ] )[0][0]
xaxb = self.model.convert ([ xa[i:i+1], s_xb ] )[0][0]
xbxa = self.model.convert ([ xb[i:i+1], s_xa ] )[0][0]
tata = self.model.convert ([ ta[i:i+1], s_ta ] )[0][0]
tbtb = self.model.convert ([ tb[i:i+1], s_tb ] )[0][0]
tatb = self.model.convert ([ ta[i:i+1], s_tb ] )[0][0]
tbta = self.model.convert ([ tb[i:i+1], s_ta ] )[0][0]
line_train = [ xa[i], xaxa, xb[i], xbxb, xaxb, xbxa ]
line_test = [ ta[i], tata, tb[i], tbtb, tatb, tbta ]
lines_train += [ np.concatenate([ np.clip(x/2+0.5,0,1) for x in line_train], axis=1) ]
lines_test += [ np.concatenate([ np.clip(x/2+0.5,0,1) for x in line_test ], axis=1) ]
lines_train = np.concatenate ( lines_train, axis=0 )
lines_test = np.concatenate ( lines_test, axis=0 )
return [ ('TRAIN', lines_train ), ('TEST', lines_test) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.model.convert ([ np.zeros ( (1, self.options['resolution'], self.options['resolution'], 3), dtype=np.float32 ), self.average_class_code ])
else:
bgr, = self.model.convert ([ face[np.newaxis,...]*2-1, self.average_class_code ])
return bgr[0] / 2 + 0.5
#override
def get_ConverterConfig(self):
face_type = FaceType.FULL
import converters
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), converters.ConverterConfigMasked(face_type=face_type,
default_mode = 1,
clip_hborder_mask_per=0.0625 if (face_type == FaceType.FULL) else 0,
)
Model = FUNITModel

View file

@ -0,0 +1 @@
from .Model import Model

View file

@ -51,7 +51,7 @@ class SAEModel(ModelBase):
default_e_ch_dims = 42
default_d_ch_dims = default_e_ch_dims // 2
def_ca_weights = False
if is_first_run:
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dims (32-1024 ?:help skip:%d) : " % (default_ae_dims) , default_ae_dims, help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['e_ch_dims'] = np.clip ( io.input_int("Encoder dims per channel (21-85 ?:help skip:%d) : " % (default_e_ch_dims) , default_e_ch_dims, help_message="More encoder dims help to recognize more facial features, but require more VRAM. You can fine-tune model size to fit your GPU." ), 21, 85 )
@ -133,15 +133,15 @@ class SAEModel(ModelBase):
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same')(x)))
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))))
return func
def enc_flow(e_dims, ae_dims, lowest_dense_res):
def func(x):
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = Dense(ae_dims)(Flatten()(x))
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
@ -151,37 +151,37 @@ class SAEModel(ModelBase):
return func
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
dims = output_nc * d_ch_dims
def ResidualBlock(dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='same')(x)
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(x))
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
return func
def func(x):
dims = output_nc * d_ch_dims
x = upscale(dims*8)(x)
if add_residual_blocks:
x = ResidualBlock(dims*8)(x)
x = ResidualBlock(dims*8)(x)
x = upscale(dims*4)(x)
if add_residual_blocks:
x = ResidualBlock(dims*4)(x)
x = ResidualBlock(dims*4)(x)
x = upscale(dims*2)(x)
if add_residual_blocks:
x = ResidualBlock(dims*2)(x)
x = ResidualBlock(dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x)
return Conv2D(output_nc, kernel_size=5, padding='valid', activation='sigmoid')(ZeroPadding2D(2)(x))
return func
self.encoder = modelify(enc_flow(e_dims, ae_dims, lowest_dense_res)) ( Input(bgr_shape) )
@ -232,20 +232,20 @@ class SAEModel(ModelBase):
mask_shape = (resolution, resolution, 1)
e_dims = output_nc*e_ch_dims
d_dims = output_nc*d_ch_dims
lowest_dense_res = resolution // 16
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same')(x)))
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='valid')(ZeroPadding2D(1)(x))))
return func
def enc_flow(e_dims):
def func(x):
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='same')(x))
x = LeakyReLU(0.1)(Conv2D(e_dims, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*2, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*4, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = LeakyReLU(0.1)(Conv2D(e_dims*8, kernel_size=5, strides=2, padding='valid')(ZeroPadding2D(2)(x)))
x = Flatten()(x)
return x
return func
@ -259,12 +259,13 @@ class SAEModel(ModelBase):
return x
return func
def dec_flow(output_nc, d_dims):
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
d_dims = output_nc*d_ch_dims
def ResidualBlock(dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='same')(x)
x = Conv2D(dim, kernel_size=3, padding='valid')(ZeroPadding2D(1)(inp))
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
@ -272,18 +273,24 @@ class SAEModel(ModelBase):
def func(x):
x = upscale(d_dims*8)(x)
x = ResidualBlock(d_dims*8)(x)
x = ResidualBlock(d_dims*8)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*8)(x)
x = ResidualBlock(d_dims*8)(x)
x = upscale(d_dims*4)(x)
x = ResidualBlock(d_dims*4)(x)
x = ResidualBlock(d_dims*4)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*4)(x)
x = ResidualBlock(d_dims*4)(x)
x = upscale(d_dims*2)(x)
x = ResidualBlock(d_dims*2)(x)
x = ResidualBlock(d_dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*2)(x)
x = ResidualBlock(d_dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='valid', activation='sigmoid')(ZeroPadding2D(2)(x))
return func
self.encoder = modelify(enc_flow(e_dims)) ( Input(bgr_shape) )
@ -293,10 +300,10 @@ class SAEModel(ModelBase):
self.inter_AB = modelify(inter_flow(lowest_dense_res, ae_dims)) ( Input(sh) )
sh = np.array(K.int_shape( self.inter_B.outputs[0] )[1:])*(1,1,2)
self.decoder = modelify(dec_flow(output_nc, d_dims)) ( Input(sh) )
self.decoder = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
if learn_mask:
self.decoderm = modelify(dec_flow(1, d_dims)) ( Input(sh) )
self.decoderm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.src_dst_trainable_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
@ -349,17 +356,17 @@ class SAEModel(ModelBase):
loaded, not_loaded = self.load_weights_safe(not_loaded)
CA_models = []
if self.options.get('ca_weights', False):
if self.options.get('ca_weights', False):
CA_models += [ model for model, _ in not_loaded ]
CA_conv_weights_list = []
for model in CA_models:
for layer in model.layers:
if type(layer) == keras.layers.Conv2D:
CA_conv_weights_list += [layer.weights[0]] #- is Conv2D kernel_weights
if len(CA_conv_weights_list) != 0:
CAInitializerMP ( CA_conv_weights_list )
CAInitializerMP ( CA_conv_weights_list )
warped_src = self.model.warped_src
target_src = Input ( (resolution, resolution, 3) )
@ -501,7 +508,7 @@ class SAEModel(ModelBase):
if self.options['learn_mask']:
feed = [ warped_src, warped_dst, target_srcm, target_dstm ]
src_mask_loss, dst_mask_loss, = self.src_dst_mask_train (feed)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override

View file

@ -0,0 +1,180 @@
import numpy as np
from facelib import FaceType
from interact import interact as io
from models import ModelBase
from nnlib import nnlib, FUNIT
from samplelib import *
class TrueFaceModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_sort_by_yaw=False,
ask_random_flip=False,
ask_src_scale_mod=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
default_resolution = 128
default_face_type = 'f'
if is_first_run:
resolution = self.options['resolution'] = io.input_int(f"Resolution ( 64-256 ?:help skip:{default_resolution}) : ", default_resolution, help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
resolution = np.clip (resolution, 64, 256)
while np.modf(resolution / 16)[0] != 0.0:
resolution -= 1
else:
self.options['resolution'] = self.options.get('resolution', default_resolution)
if is_first_run:
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
self.set_vram_batch_requirements({2:1,3:1,4:4,5:8,6:16})
resolution = self.options['resolution']
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
self.model = FUNIT( face_type_str=FaceType.toString(face_type),
batch_size=self.batch_size,
encoder_nf=64,
encoder_downs=2,
encoder_res_blk=2,
class_downs=4,
class_nf=64,
class_latent=64,
mlp_nf=256,
mlp_blks=2,
dis_nf=64,
dis_res_blks=10,
num_classes=2,
subpixel_decoder=True,
initialize_weights=self.is_first_run(),
is_training=self.is_training_mode
)
if not self.is_first_run():
self.load_weights_safe(self.model.get_model_filename_list())
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
if self.is_training_mode:
output_sample_types=[ {'types': (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh':True},
]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types )
])
else:
generator = SampleGeneratorFace(self.training_data_src_path, batch_size=1,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[ {'types': (t.IMG_SOURCE, face_type, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh':True} ] )
io.log_info("Calculating average src face style...")
codes = []
for i in io.progress_bar_generator(range(generator.get_total_sample_count())):
codes += self.model.get_average_class_code( generator.generate_next() )
self.average_class_code = np.mean ( np.array(codes), axis=0 )[None,...]
#override
def get_model_filename_list(self):
return self.model.get_model_filename_list()
#override
def onSave(self):
self.save_weights_safe(self.model.get_model_filename_list())
#override
def onTrainOneIter(self, generators_samples, generators_list):
bs = self.batch_size
lbs = bs // 2
hbs = bs - lbs
src, = generators_samples[0]
dst, = generators_samples[1]
xa = np.concatenate ( [src[0:lbs], dst[0:lbs]], axis=0 )
la = np.concatenate ( [ np.array ([0]*lbs, np.int32),
np.array ([1]*lbs, np.int32) ] )
xb = np.concatenate ( [src[lbs:], dst[lbs:]], axis=0 )
lb = np.concatenate ( [ np.array ([0]*hbs, np.int32),
np.array ([1]*hbs, np.int32) ] )
rnd_list = np.arange(lbs*2)
np.random.shuffle(rnd_list)
xa = xa[rnd_list,...]
la = la[rnd_list,...]
la = la[...,None]
rnd_list = np.arange(hbs*2)
np.random.shuffle(rnd_list)
xb = xb[rnd_list,...]
lb = lb[rnd_list,...]
lb = lb[...,None]
G_loss, D_loss = self.model.train(xa,la,xb,lb)
return ( ('G_loss', G_loss), ('D_loss', D_loss), )
#override
def onGetPreview(self, generators_samples):
xa = generators_samples[0][0]
xb = generators_samples[1][0]
view_samples = min(4, xa.shape[0])
s_xa_mean = self.model.get_average_class_code([xa])[0][None,...]
s_xb_mean = self.model.get_average_class_code([xb])[0][None,...]
s_xab_mean = self.model.get_average_class_code([ np.concatenate( [xa,xb], axis=0) ])[0][None,...]
lines = []
for i in range(view_samples):
xaxa, = self.model.convert ([ xa[i:i+1], s_xa_mean ] )
xbxb, = self.model.convert ([ xb[i:i+1], s_xb_mean ] )
xbxa, = self.model.convert ([ xb[i:i+1], s_xa_mean ] )
xa_i,xb_i,xaxa,xbxb,xbxa = [ np.clip(x/2+0.5, 0, 1) for x in [xa[i], xb[i], xaxa[0],xbxb[0],xbxa[0]] ]
lines += [ np.concatenate( (xa_i, xaxa, xb_i, xbxb, xbxa), axis=1) ]
r = np.concatenate ( lines, axis=0 )
return [ ('TrueFace', r ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.model.convert ([ np.zeros ( (1, self.options['resolution'], self.options['resolution'], 3), dtype=np.float32 ), self.average_class_code ])
else:
bgr, = self.model.convert ([ face[np.newaxis,...]*2-1, self.average_class_code ])
return bgr[0] / 2 + 0.5
#override
def get_ConverterConfig(self):
face_type = FaceType.FULL
import converters
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), converters.ConverterConfigMasked(face_type=face_type,
default_mode = 1,
clip_hborder_mask_per=0.0625 if (face_type == FaceType.FULL) else 0,
)
Model = TrueFaceModel

View file

@ -0,0 +1 @@
from .Model import Model