SAE : WARNING, RETRAIN IS REQUIRED !

fixed model sizes from previous update.
avoided bug in ML framework(keras) that forces to train the model on random noise.

Converter: added blur on the same keys as sharpness

Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT
Model produces near zero morphing and high detail face.
Model has higher failure rate than other models.
Keep src and dst faceset in same lighting conditions.
This commit is contained in:
Colombo 2019-09-19 11:13:56 +04:00
parent 201b762541
commit dc11ec32be
26 changed files with 1308 additions and 250 deletions

View file

@ -1,26 +1,27 @@
import traceback
import math
import multiprocessing
import operator
import os
import shutil
import sys
import time
import multiprocessing
import shutil
from pathlib import Path
import numpy as np
import math
import mathlib
import imagelib
import cv2
from utils import Path_utils
from utils.DFLPNG import DFLPNG
from utils.DFLJPG import DFLJPG
from utils.cv2_utils import *
import numpy as np
import facelib
from facelib import FaceType
from facelib import LandmarksProcessor
from facelib import FANSegmentator
from nnlib import nnlib
from joblib import Subprocessor
import imagelib
import mathlib
from facelib import FaceType, FANSegmentator, LandmarksProcessor
from interact import interact as io
from joblib import Subprocessor
from nnlib import nnlib
from utils import Path_utils
from utils.cv2_utils import *
from utils.DFLJPG import DFLJPG
from utils.DFLPNG import DFLPNG
DEBUG = False
@ -43,6 +44,7 @@ class ExtractSubprocessor(Subprocessor):
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.face_type = client_dict['face_type']
self.max_faces_from_image = client_dict['max_faces_from_image']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.final_output_path = Path(client_dict['final_output_dir']) if 'final_output_dir' in client_dict.keys() else None
@ -154,6 +156,13 @@ class ExtractSubprocessor(Subprocessor):
rects = data.rects = self.e.extract (rotated_image, is_bgr=True)
if len(rects) != 0:
break
if self.max_faces_from_image != 0 and len(data.rects) > 1:
#sort by largest area first
x = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in data.rects]
x = sorted(x, key=operator.itemgetter(1), reverse=True )
x = [ a[0] for a in x]
data.rects = x[0:self.max_faces_from_image]
return data
@ -283,7 +292,7 @@ class ExtractSubprocessor(Subprocessor):
return data.filename
#override
def __init__(self, input_data, type, image_size=None, face_type=None, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, final_output_path=None):
def __init__(self, input_data, type, image_size=None, face_type=None, debug_dir=None, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, max_faces_from_image=0, final_output_path=None):
self.input_data = input_data
self.type = type
self.image_size = image_size
@ -292,6 +301,7 @@ class ExtractSubprocessor(Subprocessor):
self.final_output_path = final_output_path
self.manual = manual
self.manual_window_size = manual_window_size
self.max_faces_from_image = max_faces_from_image
self.result = []
self.devices = ExtractSubprocessor.get_devices_for_config(self.manual, self.type, multi_gpu, cpu_only)
@ -341,6 +351,7 @@ class ExtractSubprocessor(Subprocessor):
base_dict = {'type' : self.type,
'image_size': self.image_size,
'face_type': self.face_type,
'max_faces_from_image':self.max_faces_from_image,
'debug_dir': self.debug_dir,
'final_output_dir': str(self.final_output_path),
'stdin_fd': sys.stdin.fileno() }
@ -681,8 +692,96 @@ class DeletedFilesSearcherSubprocessor(Subprocessor):
def get_result(self):
return self.result
def main(input_dir,
output_dir,
debug_dir=None,
detector='mt',
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
image_size=256,
face_type='full_face',
max_faces_from_image=0,
device_args={}):
#currently unused
input_path = Path(input_dir)
output_path = Path(output_dir)
face_type = FaceType.fromString(face_type)
multi_gpu = device_args.get('multi_gpu', False)
cpu_only = device_args.get('cpu_only', False)
if not input_path.exists():
raise ValueError('Input directory not found. Please ensure it exists.')
if output_path.exists():
if not manual_output_debug_fix and input_path != output_path:
output_images_paths = Path_utils.get_image_paths(output_path)
if len(output_images_paths) > 0:
io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False )
for filename in output_images_paths:
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if manual_output_debug_fix:
if debug_dir is None:
raise ValueError('debug-dir must be specified')
detector = 'manual'
io.log_info('Performing re-extract frames which were deleted from _debug directory.')
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)
if debug_dir is not None:
debug_output_path = Path(debug_dir)
if manual_output_debug_fix:
if not debug_output_path.exists():
raise ValueError("%s not found " % ( str(debug_output_path) ))
input_path_image_paths = DeletedFilesSearcherSubprocessor (input_path_image_paths, Path_utils.get_image_paths(debug_output_path) ).run()
input_path_image_paths = sorted (input_path_image_paths)
io.log_info('Found %d images.' % (len(input_path_image_paths)))
else:
if debug_output_path.exists():
for filename in Path_utils.get_image_paths(debug_output_path):
Path(filename).unlink()
else:
debug_output_path.mkdir(parents=True, exist_ok=True)
images_found = len(input_path_image_paths)
faces_detected = 0
if images_found != 0:
if detector == 'manual':
io.log_info ('Performing manual extract...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug_dir, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).run()
else:
io.log_info ('Performing 1st pass...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in input_path_image_paths ], 'rects-'+detector, image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, max_faces_from_image=max_faces_from_image).run()
io.log_info ('Performing 2nd pass...')
data = ExtractSubprocessor (data, 'landmarks', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
io.log_info ('Performing 3rd pass...')
data = ExtractSubprocessor (data, 'final', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
faces_detected += sum([d.faces_detected for d in data])
if manual_fix:
if all ( np.array ( [ d.faces_detected > 0 for d in data] ) == True ):
io.log_info ('All faces are detected, manual fix not needed.')
else:
fix_data = [ ExtractSubprocessor.Data(d.filename) for d in data if d.faces_detected == 0 ]
io.log_info ('Performing manual fix for %d images...' % (len(fix_data)) )
fix_data = ExtractSubprocessor (fix_data, 'landmarks', image_size, face_type, debug_dir, manual=True, manual_window_size=manual_window_size).run()
fix_data = ExtractSubprocessor (fix_data, 'final', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
faces_detected += sum([d.faces_detected for d in fix_data])
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )
io.log_info ('-------------------------')
#unused in end user workflow
def extract_fanseg(input_dir, device_args={} ):
multi_gpu = device_args.get('multi_gpu', False)
cpu_only = device_args.get('cpu_only', False)
@ -709,6 +808,7 @@ def extract_fanseg(input_dir, device_args={} ):
io.log_info ("Performing extract fanseg for %d files..." % (paths_to_extract_len) )
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in paths_to_extract ], 'fanseg', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
#unused in end user workflow
def extract_umd_csv(input_file_csv,
image_size=256,
face_type='full_face',
@ -781,94 +881,6 @@ def extract_umd_csv(input_file_csv,
faces_detected += sum([d.faces_detected for d in data])
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )
io.log_info ('-------------------------')
def main(input_dir,
output_dir,
debug_dir=None,
detector='mt',
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
image_size=256,
face_type='full_face',
device_args={}):
input_path = Path(input_dir)
output_path = Path(output_dir)
face_type = FaceType.fromString(face_type)
multi_gpu = device_args.get('multi_gpu', False)
cpu_only = device_args.get('cpu_only', False)
if not input_path.exists():
raise ValueError('Input directory not found. Please ensure it exists.')
if output_path.exists():
if not manual_output_debug_fix and input_path != output_path:
output_images_paths = Path_utils.get_image_paths(output_path)
if len(output_images_paths) > 0:
io.input_bool("WARNING !!! \n %s contains files! \n They will be deleted. \n Press enter to continue." % (str(output_path)), False )
for filename in output_images_paths:
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if manual_output_debug_fix:
if debug_dir is None:
raise ValueError('debug-dir must be specified')
detector = 'manual'
io.log_info('Performing re-extract frames which were deleted from _debug directory.')
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)
if debug_dir is not None:
debug_output_path = Path(debug_dir)
if manual_output_debug_fix:
if not debug_output_path.exists():
raise ValueError("%s not found " % ( str(debug_output_path) ))
input_path_image_paths = DeletedFilesSearcherSubprocessor (input_path_image_paths, Path_utils.get_image_paths(debug_output_path) ).run()
input_path_image_paths = sorted (input_path_image_paths)
io.log_info('Found %d images.' % (len(input_path_image_paths)))
else:
if debug_output_path.exists():
for filename in Path_utils.get_image_paths(debug_output_path):
Path(filename).unlink()
else:
debug_output_path.mkdir(parents=True, exist_ok=True)
images_found = len(input_path_image_paths)
faces_detected = 0
if images_found != 0:
if detector == 'manual':
io.log_info ('Performing manual extract...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug_dir, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).run()
else:
io.log_info ('Performing 1st pass...')
data = ExtractSubprocessor ([ ExtractSubprocessor.Data(filename) for filename in input_path_image_paths ], 'rects-'+detector, image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
io.log_info ('Performing 2nd pass...')
data = ExtractSubprocessor (data, 'landmarks', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
io.log_info ('Performing 3rd pass...')
data = ExtractSubprocessor (data, 'final', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
faces_detected += sum([d.faces_detected for d in data])
if manual_fix:
if all ( np.array ( [ d.faces_detected > 0 for d in data] ) == True ):
io.log_info ('All faces are detected, manual fix not needed.')
else:
fix_data = [ ExtractSubprocessor.Data(d.filename) for d in data if d.faces_detected == 0 ]
io.log_info ('Performing manual fix for %d images...' % (len(fix_data)) )
fix_data = ExtractSubprocessor (fix_data, 'landmarks', image_size, face_type, debug_dir, manual=True, manual_window_size=manual_window_size).run()
fix_data = ExtractSubprocessor (fix_data, 'final', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
faces_detected += sum([d.faces_detected for d in fix_data])
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )