mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
SAE : WARNING, RETRAIN IS REQUIRED !
fixed model sizes from previous update. avoided bug in ML framework(keras) that forces to train the model on random noise. Converter: added blur on the same keys as sharpness Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT Model produces near zero morphing and high detail face. Model has higher failure rate than other models. Keep src and dst faceset in same lighting conditions.
This commit is contained in:
parent
201b762541
commit
dc11ec32be
26 changed files with 1308 additions and 250 deletions
|
@ -183,6 +183,55 @@ landmarks_68_3D = np.array( [
|
|||
[0.205322 , 31.408738 , -21.903670 ],
|
||||
[-7.198266 , 30.844876 , -20.328022 ] ], dtype=np.float32)
|
||||
|
||||
def convert_98_to_68(lmrks):
|
||||
#jaw
|
||||
result = [ lmrks[0] ]
|
||||
for i in range(2,16,2):
|
||||
result += [ ( lmrks[i] + (lmrks[i-1]+lmrks[i+1])/2 ) / 2 ]
|
||||
result += [ lmrks[16] ]
|
||||
for i in range(18,32,2):
|
||||
result += [ ( lmrks[i] + (lmrks[i-1]+lmrks[i+1])/2 ) / 2 ]
|
||||
result += [ lmrks[32] ]
|
||||
|
||||
#eyebrows averaging
|
||||
result += [ lmrks[33],
|
||||
(lmrks[34]+lmrks[41])/2,
|
||||
(lmrks[35]+lmrks[40])/2,
|
||||
(lmrks[36]+lmrks[39])/2,
|
||||
(lmrks[37]+lmrks[38])/2,
|
||||
]
|
||||
|
||||
result += [ (lmrks[42]+lmrks[50])/2,
|
||||
(lmrks[43]+lmrks[49])/2,
|
||||
(lmrks[44]+lmrks[48])/2,
|
||||
(lmrks[45]+lmrks[47])/2,
|
||||
lmrks[46]
|
||||
]
|
||||
|
||||
#nose
|
||||
result += list ( lmrks[51:60] )
|
||||
|
||||
#left eye (from our view)
|
||||
result += [ lmrks[60],
|
||||
lmrks[61],
|
||||
lmrks[63],
|
||||
lmrks[64],
|
||||
lmrks[65],
|
||||
lmrks[67] ]
|
||||
|
||||
#right eye
|
||||
result += [ lmrks[68],
|
||||
lmrks[69],
|
||||
lmrks[71],
|
||||
lmrks[72],
|
||||
lmrks[73],
|
||||
lmrks[75] ]
|
||||
|
||||
#mouth
|
||||
result += list ( lmrks[76:96] )
|
||||
|
||||
return np.concatenate (result).reshape ( (68,2) )
|
||||
|
||||
def transform_points(points, mat, invert=False):
|
||||
if invert:
|
||||
mat = cv2.invertAffineTransform (mat)
|
||||
|
@ -310,8 +359,8 @@ def alpha_to_color (img_alpha, color):
|
|||
result[:,:] = color
|
||||
|
||||
return result * img_alpha
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
||||
h,w,c = image_shape
|
||||
|
@ -361,7 +410,7 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|||
s,e = d[name]
|
||||
result = dists[...,s:e]
|
||||
if thickness != 0:
|
||||
result = np.abs(result)-thickness
|
||||
result = np.abs(result)-thickness
|
||||
return np.min (result, axis=-1)
|
||||
|
||||
return get_dists
|
||||
|
@ -371,7 +420,7 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|||
l_brow = lmrks[22:27]
|
||||
r_brow = lmrks[17:22]
|
||||
mouth = lmrks[48:60]
|
||||
|
||||
|
||||
up_nose = np.concatenate( (lmrks[27:31], lmrks[33:34]) )
|
||||
down_nose = lmrks[31:36]
|
||||
nose = np.concatenate ( (up_nose, down_nose) )
|
||||
|
@ -400,7 +449,7 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|||
|
||||
mouth_fall_dist = w // 32
|
||||
mouth_thickness = max( w // 64, 1 )
|
||||
|
||||
|
||||
eyes_mask = gdf('eyes',eyes_thickness)
|
||||
eyes_mask = 1-np.clip( eyes_mask/ eyes_fall_dist, 0, 1)
|
||||
#eyes_mask = np.clip ( 1- ( np.sqrt( np.maximum(eyes_mask,0) ) / eyes_fall_dist ), 0, 1)
|
||||
|
@ -409,15 +458,15 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|||
brows_mask = gdf('brows', brows_thickness)
|
||||
brows_mask = 1-np.clip( brows_mask / brows_fall_dist, 0, 1)
|
||||
#brows_mask = np.clip ( 1- ( np.sqrt( np.maximum(brows_mask,0) ) / brows_fall_dist ), 0, 1)
|
||||
|
||||
|
||||
mouth_mask = gdf('mouth', mouth_thickness)
|
||||
mouth_mask = 1-np.clip( mouth_mask / mouth_fall_dist, 0, 1)
|
||||
#mouth_mask = np.clip ( 1- ( np.sqrt( np.maximum(mouth_mask,0) ) / mouth_fall_dist ), 0, 1)
|
||||
|
||||
|
||||
def blend(a,b,k):
|
||||
x = np.clip ( 0.5+0.5*(b-a)/k, 0.0, 1.0 )
|
||||
return (a-b)*x+b - k*x*(1.0-x)
|
||||
|
||||
|
||||
|
||||
#nose_mask = (a-b)*x+b - k*x*(1.0-x)
|
||||
|
||||
|
@ -426,7 +475,7 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|||
|
||||
nose_mask = blend ( gdf('up_nose', nose_thickness), gdf('down_nose', nose_thickness), nose_thickness*3 )
|
||||
nose_mask = 1-np.clip( nose_mask / nose_fall_dist, 0, 1)
|
||||
|
||||
|
||||
up_nose_mask = gdf('up_nose', nose_thickness)
|
||||
up_nose_mask = 1-np.clip( up_nose_mask / nose_fall_dist, 0, 1)
|
||||
#up_nose_mask = np.clip ( 1- ( np.cbrt( np.maximum(up_nose_mask,0) ) / nose_fall_dist ), 0, 1)
|
||||
|
@ -441,17 +490,17 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
|
|||
#nose_mask = down_nose_mask
|
||||
|
||||
#nose_mask = np.zeros_like(nose_mask)
|
||||
|
||||
|
||||
eyes_mask = eyes_mask * (1-mouth_mask)
|
||||
nose_mask = nose_mask * (1-eyes_mask)
|
||||
|
||||
|
||||
hull_mask = hull[...,0].copy()
|
||||
hull_mask = hull_mask * (1-eyes_mask) * (1-brows_mask) * (1-nose_mask) * (1-mouth_mask)
|
||||
|
||||
#eyes_mask = eyes_mask * (1-nose_mask)
|
||||
|
||||
|
||||
mouth_mask= mouth_mask * (1-nose_mask)
|
||||
|
||||
|
||||
brows_mask = brows_mask * (1-nose_mask)* (1-eyes_mask )
|
||||
|
||||
hull_mask = alpha_to_color(hull_mask, (0,1,0) )
|
||||
|
@ -613,5 +662,5 @@ def estimate_pitch_yaw_roll(aligned_256px_landmarks):
|
|||
pitch, yaw, roll = mathlib.rotationMatrixToEulerAngles( cv2.Rodrigues(rotation_vector)[0] )
|
||||
pitch = np.clip ( pitch/1.30, -1.0, 1.0 )
|
||||
yaw = np.clip ( yaw / 1.11, -1.0, 1.0 )
|
||||
roll = np.clip ( roll/3.15, -1.0, 1.0 )
|
||||
roll = np.clip ( roll/3.15, -1.0, 1.0 ) #todo radians
|
||||
return -pitch, yaw, roll
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue