mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-16 10:03:41 -07:00
SAE : WARNING, RETRAIN IS REQUIRED !
fixed model sizes from previous update. avoided bug in ML framework(keras) that forces to train the model on random noise. Converter: added blur on the same keys as sharpness Added new model 'TrueFace'. This is a GAN model ported from https://github.com/NVlabs/FUNIT Model produces near zero morphing and high detail face. Model has higher failure rate than other models. Keep src and dst faceset in same lighting conditions.
This commit is contained in:
parent
201b762541
commit
dc11ec32be
26 changed files with 1308 additions and 250 deletions
|
@ -18,7 +18,7 @@ class ConverterConfig(object):
|
|||
self.type = type
|
||||
|
||||
self.superres_func = None
|
||||
self.sharpen_func = None
|
||||
self.blursharpen_func = None
|
||||
self.fanseg_input_size = None
|
||||
self.fanseg_extract_func = None
|
||||
self.ebs_ct_func = None
|
||||
|
@ -29,7 +29,7 @@ class ConverterConfig(object):
|
|||
#default changeable params
|
||||
self.super_resolution_mode = 0
|
||||
self.sharpen_mode = 0
|
||||
self.sharpen_amount = 0
|
||||
self.blursharpen_amount = 0
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
@ -43,7 +43,7 @@ class ConverterConfig(object):
|
|||
self.sharpen_mode = io.input_int (s, 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
|
||||
|
||||
if self.sharpen_mode != 0:
|
||||
self.sharpen_amount = np.clip ( io.input_int ("Choose sharpen amount [0..100] (skip:%d) : " % 10, 10), 0, 100 )
|
||||
self.blursharpen_amount = np.clip ( io.input_int ("Choose blur/sharpen amount [-100..100] (skip:0) : ", 0), -100, 100 )
|
||||
|
||||
s = """Choose super resolution mode: \n"""
|
||||
for key in self.super_res_dict.keys():
|
||||
|
@ -55,8 +55,8 @@ class ConverterConfig(object):
|
|||
a = list( self.sharpen_dict.keys() )
|
||||
self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ]
|
||||
|
||||
def add_sharpen_amount(self, diff):
|
||||
self.sharpen_amount = np.clip ( self.sharpen_amount+diff, 0, 100)
|
||||
def add_blursharpen_amount(self, diff):
|
||||
self.blursharpen_amount = np.clip ( self.blursharpen_amount+diff, -100, 100)
|
||||
|
||||
def toggle_super_resolution_mode(self):
|
||||
a = list( self.super_res_dict.keys() )
|
||||
|
@ -68,7 +68,7 @@ class ConverterConfig(object):
|
|||
|
||||
if isinstance(other, ConverterConfig):
|
||||
return self.sharpen_mode == other.sharpen_mode and \
|
||||
(self.sharpen_mode == 0 or ((self.sharpen_mode == other.sharpen_mode) and (self.sharpen_amount == other.sharpen_amount) )) and \
|
||||
self.blursharpen_amount == other.blursharpen_amount and \
|
||||
self.super_resolution_mode == other.super_resolution_mode
|
||||
|
||||
return False
|
||||
|
@ -77,8 +77,7 @@ class ConverterConfig(object):
|
|||
def to_string(self, filename):
|
||||
r = ""
|
||||
r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n"
|
||||
if self.sharpen_mode != 0:
|
||||
r += f"sharpen_amount : {self.sharpen_amount}\n"
|
||||
r += f"blursharpen_amount : {self.blursharpen_amount}\n"
|
||||
r += f"super_resolution_mode : {self.super_res_dict[self.super_resolution_mode]}\n"
|
||||
return r
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue