SAE: added option "Use CA weights":

Initialize network with 'Convolution Aware' weights. This may help to achieve a higher accuracy model, but consumes time at first run.
This commit is contained in:
iperov 2019-03-16 12:54:36 +04:00
parent 71ff0ce1a7
commit d6a45763a2
4 changed files with 346 additions and 18 deletions

View file

@ -86,7 +86,7 @@ class Subprocessor(object):
c2s.put ( {'op': 'error', 'data' : data} )
#overridable
def __init__(self, name, SubprocessorCli_class, no_response_time_sec = 60):
def __init__(self, name, SubprocessorCli_class, no_response_time_sec = 0):
if not issubclass(SubprocessorCli_class, Subprocessor.Cli):
raise ValueError("SubprocessorCli_class must be subclass of Subprocessor.Cli")

View file

@ -56,12 +56,15 @@ class SAEModel(ModelBase):
default_ae_dims = 256 if self.options['archi'] == 'liae' else 512
default_ed_ch_dims = 42
def_ca_weights = False
if is_first_run:
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dims (32-1024 ?:help skip:%d) : " % (default_ae_dims) , default_ae_dims, help_message="More dims are better, but requires more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['ed_ch_dims'] = np.clip ( io.input_int("Encoder/Decoder dims per channel (21-85 ?:help skip:%d) : " % (default_ed_ch_dims) , default_ed_ch_dims, help_message="More dims are better, but requires more VRAM. You can fine-tune model size to fit your GPU." ), 21, 85 )
self.options['ca_weights'] = io.input_bool ("Use CA weights? (y/n, ?:help skip: %s ) : " % (yn_str[def_ca_weights]), def_ca_weights, help_message="Initialize network with 'Convolution Aware' weights. This may help to achieve a higher accuracy model, but consumes time at first run.")
else:
self.options['ae_dims'] = self.options.get('ae_dims', default_ae_dims)
self.options['ed_ch_dims'] = self.options.get('ed_ch_dims', default_ed_ch_dims)
self.options['ca_weights'] = self.options.get('ca_weights', def_ca_weights)
if is_first_run:
self.options['lighter_encoder'] = io.input_bool ("Use lightweight encoder? (y/n, ?:help skip:n) : ", False, help_message="Lightweight encoder is 35% faster, requires less VRAM, but sacrificing overall quality.")
@ -122,6 +125,7 @@ class SAEModel(ModelBase):
target_dstm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
models_list = []
weights_to_load = []
if self.options['archi'] == 'liae':
self.encoder = modelify(SAEModel.LIAEEncFlow(resolution, self.options['lighter_encoder'], ed_ch_dims=ed_ch_dims) ) (Input(bgr_shape))
@ -135,9 +139,12 @@ class SAEModel(ModelBase):
self.decoder = modelify(SAEModel.LIAEDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2, multiscale_count=self.ms_count )) (inter_output_Inputs)
models_list += [self.encoder, self.inter_B, self.inter_AB, self.decoder]
if self.options['learn_mask']:
self.decoderm = modelify(SAEModel.LIAEDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (inter_output_Inputs)
models_list += [self.decoderm]
if not self.is_first_run():
weights_to_load += [ [self.encoder , 'encoder.h5'],
[self.inter_B , 'inter_B.h5'],
@ -146,7 +153,7 @@ class SAEModel(ModelBase):
]
if self.options['learn_mask']:
weights_to_load += [ [self.decoderm, 'decoderm.h5'] ]
warped_src_code = self.encoder (warped_src)
warped_src_inter_AB_code = self.inter_AB (warped_src_code)
warped_src_inter_code = Concatenate()([warped_src_inter_AB_code,warped_src_inter_AB_code])
@ -175,10 +182,13 @@ class SAEModel(ModelBase):
self.decoder_src = modelify(SAEModel.DFDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2, multiscale_count=self.ms_count )) (dec_Inputs)
self.decoder_dst = modelify(SAEModel.DFDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2, multiscale_count=self.ms_count )) (dec_Inputs)
models_list += [self.encoder, self.decoder_src, self.decoder_dst]
if self.options['learn_mask']:
self.decoder_srcm = modelify(SAEModel.DFDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
self.decoder_dstm = modelify(SAEModel.DFDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
models_list += [self.decoder_srcm, self.decoder_dstm]
if not self.is_first_run():
weights_to_load += [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
@ -188,7 +198,11 @@ class SAEModel(ModelBase):
weights_to_load += [ [self.decoder_srcm, 'decoder_srcm.h5'],
[self.decoder_dstm, 'decoder_dstm.h5'],
]
warped_src_code = self.encoder (warped_src)
warped_dst_code = self.encoder (warped_dst)
pred_src_src = self.decoder_src(warped_src_code)
@ -208,10 +222,13 @@ class SAEModel(ModelBase):
self.decoder_src = modelify(SAEModel.VGDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2 )) (dec_Inputs)
self.decoder_dst = modelify(SAEModel.VGDecFlow (bgr_shape[2],ed_ch_dims=ed_ch_dims//2 )) (dec_Inputs)
models_list += [self.encoder, self.decoder_src, self.decoder_dst]
if self.options['learn_mask']:
self.decoder_srcm = modelify(SAEModel.VGDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
self.decoder_dstm = modelify(SAEModel.VGDecFlow (mask_shape[2],ed_ch_dims=int(ed_ch_dims/1.5) )) (dec_Inputs)
models_list += [self.decoder_srcm, self.decoder_dstm]
if not self.is_first_run():
weights_to_load += [ [self.encoder , 'encoder.h5'],
[self.decoder_src, 'decoder_src.h5'],
@ -233,7 +250,17 @@ class SAEModel(ModelBase):
pred_src_srcm = self.decoder_srcm(warped_src_code)
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
pred_src_dstm = self.decoder_srcm(warped_dst_code)
if self.is_first_run() and self.options['ca_weights']:
io.log_info ("Initializing CA weights...")
conv_weights_list = []
for model in models_list:
for layer in model.layers:
if type(layer) == Conv2D:
conv_weights_list += [layer.weights[0]] #Conv2D kernel_weights
CAInitializerMP ( conv_weights_list )
pred_src_src, pred_dst_dst, pred_src_dst, = [ [x] if type(x) != list else x for x in [pred_src_src, pred_dst_dst, pred_src_dst, ] ]
if self.options['learn_mask']:
@ -468,9 +495,6 @@ class SAEModel(ModelBase):
def initialize_nn_functions():
exec (nnlib.import_all(), locals(), globals())
def conv_initializer():
return RandomNormal(0, 0.02)
class ResidualBlock(object):
def __init__(self, filters, kernel_size=3, padding='same', use_reflection_padding=False):
self.filters = filters
@ -484,13 +508,13 @@ class SAEModel(ModelBase):
#if self.use_reflection_padding:
# #var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=conv_initializer() )(var_x)
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=RandomNormal(0, 0.02) )(var_x)
var_x = LeakyReLU(alpha=0.2)(var_x)
#if self.use_reflection_padding:
# #var_x = ReflectionPadding2D(stride=1, kernel_size=kernel_size)(var_x)
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=conv_initializer() )(var_x)
var_x = Conv2D(self.filters, kernel_size=self.kernel_size, padding=self.padding, kernel_initializer=RandomNormal(0, 0.02) )(var_x)
var_x = Scale(gamma_init=keras.initializers.Constant(value=0.1))(var_x)
var_x = Add()([var_x, inp])
var_x = LeakyReLU(alpha=0.2)(var_x)
@ -499,25 +523,25 @@ class SAEModel(ModelBase):
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=conv_initializer())(x))
return LeakyReLU(0.1)(Conv2D(dim, kernel_size=5, strides=2, padding='same', kernel_initializer=RandomNormal(0, 0.02))(x))
return func
SAEModel.downscale = downscale
def downscale_sep (dim):
def func(x):
return LeakyReLU(0.1)(SeparableConv2D(dim, kernel_size=5, strides=2, padding='same', depthwise_initializer=conv_initializer(), pointwise_initializer=RandomNormal(0, 0.02) )(x))
return LeakyReLU(0.1)(SeparableConv2D(dim, kernel_size=5, strides=2, padding='same', depthwise_initializer=RandomNormal(0, 0.02), pointwise_initializer=RandomNormal(0, 0.02) )(x))
return func
SAEModel.downscale_sep = downscale_sep
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same', kernel_initializer=conv_initializer() )(x)))
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same', kernel_initializer=RandomNormal(0, 0.02) )(x)))
return func
SAEModel.upscale = upscale
def to_bgr (output_nc):
def func(x):
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid', kernel_initializer=conv_initializer() )(x)
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid', kernel_initializer=RandomNormal(0, 0.02) )(x)
return func
SAEModel.to_bgr = to_bgr

112
nnlib/CAInitializer.py Normal file
View file

@ -0,0 +1,112 @@
import numpy as np
def _compute_fans(shape, data_format='channels_last'):
"""Computes the number of input and output units for a weight shape.
# Arguments
shape: Integer shape tuple.
data_format: Image data format to use for convolution kernels.
Note that all kernels in Keras are standardized on the
`channels_last` ordering (even when inputs are set
to `channels_first`).
# Returns
A tuple of scalars, `(fan_in, fan_out)`.
# Raises
ValueError: in case of invalid `data_format` argument.
"""
if len(shape) == 2:
fan_in = shape[0]
fan_out = shape[1]
elif len(shape) in {3, 4, 5}:
# Assuming convolution kernels (1D, 2D or 3D).
# TH kernel shape: (depth, input_depth, ...)
# TF kernel shape: (..., input_depth, depth)
if data_format == 'channels_first':
receptive_field_size = np.prod(shape[2:])
fan_in = shape[1] * receptive_field_size
fan_out = shape[0] * receptive_field_size
elif data_format == 'channels_last':
receptive_field_size = np.prod(shape[:-2])
fan_in = shape[-2] * receptive_field_size
fan_out = shape[-1] * receptive_field_size
else:
raise ValueError('Invalid data_format: ' + data_format)
else:
# No specific assumptions.
fan_in = np.sqrt(np.prod(shape))
fan_out = np.sqrt(np.prod(shape))
return fan_in, fan_out
def _create_basis(filters, size, floatx, eps_std):
if size == 1:
return np.random.normal(0.0, eps_std, (filters, size))
nbb = filters // size + 1
li = []
for i in range(nbb):
a = np.random.normal(0.0, 1.0, (size, size))
a = _symmetrize(a)
u, _, v = np.linalg.svd(a)
li.extend(u.T.tolist())
p = np.array(li[:filters], dtype=floatx)
return p
def _symmetrize(a):
return a + a.T - np.diag(a.diagonal())
def _scale_filters(filters, variance):
c_var = np.var(filters)
p = np.sqrt(variance / c_var)
return filters * p
def CAGenerateWeights ( shape, floatx, data_format, eps_std=0.05, seed=None ):
if seed is not None:
np.random.seed(seed)
fan_in, fan_out = _compute_fans(shape, data_format)
variance = 2 / fan_in
rank = len(shape)
if rank == 3:
row, stack_size, filters_size = shape
transpose_dimensions = (2, 1, 0)
kernel_shape = (row,)
correct_ifft = lambda shape, s=[None]: np.fft.irfft(shape, s[0])
correct_fft = np.fft.rfft
elif rank == 4:
row, column, stack_size, filters_size = shape
transpose_dimensions = (2, 3, 1, 0)
kernel_shape = (row, column)
correct_ifft = np.fft.irfft2
correct_fft = np.fft.rfft2
elif rank == 5:
x, y, z, stack_size, filters_size = shape
transpose_dimensions = (3, 4, 0, 1, 2)
kernel_shape = (x, y, z)
correct_fft = np.fft.rfftn
correct_ifft = np.fft.irfftn
else:
raise ValueError('rank unsupported')
kernel_fourier_shape = correct_fft(np.zeros(kernel_shape)).shape
init = []
for i in range(filters_size):
basis = _create_basis(
stack_size, np.prod(kernel_fourier_shape), floatx, eps_std)
basis = basis.reshape((stack_size,) + kernel_fourier_shape)
filters = [correct_ifft(x, kernel_shape) +
np.random.normal(0, eps_std, kernel_shape) for
x in basis]
init.append(filters)
# Format of array is now: filters, stack, row, column
init = np.array(init)
init = _scale_filters(init, variance)
return init.transpose(transpose_dimensions)

View file

@ -3,8 +3,13 @@ import sys
import contextlib
import numpy as np
from .CAInitializer import CAGenerateWeights
import multiprocessing
from joblib import Subprocessor
from utils import std_utils
from .device import device
from interact import interact as io
class nnlib(object):
device = device #forwards nnlib.devicelib to device in order to use nnlib as standalone lib
@ -73,6 +78,7 @@ Model = keras.models.Model
#Adam = keras.optimizers.Adam
Adam = nnlib.Adam
Padam = nnlib.Padam
modelify = nnlib.modelify
gaussian_blur = nnlib.gaussian_blur
@ -82,6 +88,7 @@ dssim = nnlib.dssim
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
CAInitializerMP = nnlib.CAInitializerMP
#ReflectionPadding2D = nnlib.ReflectionPadding2D
#AddUniformNoise = nnlib.AddUniformNoise
@ -91,7 +98,6 @@ Scale = nnlib.Scale
keras_contrib = nnlib.keras_contrib
GroupNormalization = keras_contrib.layers.GroupNormalization
InstanceNormalization = keras_contrib.layers.InstanceNormalization
Padam = keras_contrib.optimizers.Padam
"""
code_import_dlib_string = \
"""
@ -497,7 +503,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
e = K.tf.device("/cpu:0") if self.tf_cpu_mode == 2 else None
if e: e.__enter__()
if e: e.__enter__()
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
@ -532,6 +538,126 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
base_config = super(Adam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Adam = Adam
class Padam(keras.optimizers.Optimizer):
"""Partially adaptive momentum estimation optimizer.
# Arguments
lr: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
decay: float >= 0. Learning rate decay over each update.
amsgrad: boolean. Whether to apply the AMSGrad variant of this
algorithm from the paper "On the Convergence of Adam and
Beyond".
partial: float, 0 <= partial <= 0.5 . Parameter controlling partial
momentum adaption. For `partial=0`, this optimizer behaves like SGD,
for `partial=0.5` it behaves like AMSGrad.
# References
- [Closing the Generalization Gap of Adaptive Gradient Methods
in Training Deep Neural Networks](https://arxiv.org/pdf/1806.06763.pdf)
"""
def __init__(self, lr=1e-1, beta_1=0.9, beta_2=0.999,
epsilon=1e-8, decay=0., amsgrad=False, partial=1. / 8., tf_cpu_mode=0, **kwargs):
if partial < 0 or partial > 0.5:
raise ValueError(
"Padam: 'partial' must be a positive float with a maximum "
"value of `0.5`, since higher values will cause divergence "
"during training."
)
super(Padam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.partial = partial
self.initial_decay = decay
self.amsgrad = amsgrad
self.tf_cpu_mode = tf_cpu_mode
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
e = K.tf.device("/cpu:0") if self.tf_cpu_mode > 0 else None
if e: e.__enter__()
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1) for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
if e: e.__exit__(None, None, None)
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
e = K.tf.device("/cpu:0") if self.tf_cpu_mode == 2 else None
if e: e.__enter__()
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
if self.amsgrad:
vhat_t = K.maximum(vhat, v_t)
self.updates.append(K.update(vhat, vhat_t))
if e: e.__exit__(None, None, None)
if self.amsgrad:
denom = (K.sqrt(vhat_t) + self.epsilon)
else:
denom = (K.sqrt(v_t) + self.epsilon)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
# Partial momentum adaption.
new_p = p - (lr_t * (m_t / (denom ** (self.partial * 2))))
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon,
'amsgrad': self.amsgrad,
'partial': self.partial}
base_config = super(Padam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.Padam = Padam
def CAInitializerMP( conv_weights_list ):
result = CAInitializerMPSubprocessor ( [ (i, K.int_shape(conv_weights)) for i, conv_weights in enumerate(conv_weights_list) ], K.floatx(), K.image_data_format() ).run()
for idx, weights in result:
K.set_value ( conv_weights_list[idx], weights )
nnlib.CAInitializerMP = CAInitializerMP
'''
not implemented in plaidML
class ReflectionPadding2D(keras.layers.Layer):
@ -812,5 +938,71 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
if nnlib.tf is not None:
nnlib.tf_sess = None
nnlib.tf = None
class CAInitializerMPSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.floatx = client_dict['floatx']
self.data_format = client_dict['data_format']
#override
def process_data(self, data):
idx, shape = data
weights = CAGenerateWeights (shape, self.floatx, self.data_format)
return idx, weights
#override
def get_data_name (self, data):
#return string identificator of your data
return "undefined"
#override
def __init__(self, idx_shapes_list, floatx, data_format ):
self.idx_shapes_list = idx_shapes_list
self.floatx = floatx
self.data_format = data_format
self.result = []
super().__init__('CAInitializerMP', CAInitializerMPSubprocessor.Cli)
#override
def on_clients_initialized(self):
io.progress_bar ("Processing", len (self.idx_shapes_list))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
for i in range(multiprocessing.cpu_count()):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'floatx' : self.floatx,
'data_format' : self.data_format
}
#override
def get_data(self, host_dict):
if len (self.idx_shapes_list) > 0:
return self.idx_shapes_list.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
self.idx_shapes_list.insert(0, data)
#override
def on_result (self, host_dict, data, result):
self.result.append ( result )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result