added sort by absdiff

This is sort method by absolute per pixel difference between all faces.
options:
Sort by similar? ( y/n ?:help skip:y ) :
if you choose 'n', then most dissimilar faces will be placed first.
This commit is contained in:
Colombo 2019-12-11 22:33:49 +04:00
parent e8673e3fcc
commit d4745b5cf8
2 changed files with 87 additions and 5 deletions

View file

@ -112,7 +112,7 @@ if __name__ == "__main__":
p = subparsers.add_parser( "sort", help="Sort faces in a directory.")
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--by', required=True, dest="sort_by_method", choices=("blur", "face", "face-dissim", "face-yaw", "face-pitch", "hist", "hist-dissim", "brightness", "hue", "black", "origname", "oneface", "final", "final-no-blur", "vggface", "test"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." )
p.add_argument('--by', required=True, dest="sort_by_method", choices=("blur", "face", "face-dissim", "face-yaw", "face-pitch", "hist", "hist-dissim", "brightness", "hue", "black", "origname", "oneface", "final", "final-no-blur", "vggface", "absdiff", "test"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." )
p.set_defaults (func=process_sort)
def process_util(arguments):
@ -274,10 +274,12 @@ if __name__ == "__main__":
p.set_defaults(func=process_labelingtool_edit_mask)
def process_relight_faceset(arguments):
os_utils.set_process_lowest_prio()
from mainscripts import FacesetRelighter
FacesetRelighter.relight (arguments.input_dir, arguments.lighten, arguments.random_one)
def process_delete_relighted(arguments):
os_utils.set_process_lowest_prio()
from mainscripts import FacesetRelighter
FacesetRelighter.delete_relighted (arguments.input_dir)

View file

@ -1,7 +1,9 @@
import os
import multiprocessing
import multiprocessing
import operator
import os
import sys
import tempfile
from functools import cmp_to_key
from pathlib import Path
from shutil import copyfile
@ -11,11 +13,10 @@ from numpy import linalg as npla
import imagelib
from facelib import LandmarksProcessor
from functools import cmp_to_key
from imagelib import estimate_sharpness
from interact import interact as io
from joblib import Subprocessor
from nnlib import VGGFace
from nnlib import VGGFace, nnlib
from utils import Path_utils
from utils.cv2_utils import *
from utils.DFLJPG import DFLJPG
@ -837,6 +838,84 @@ def sort_by_vggface(input_path):
return img_list, trash_img_list
def sort_by_absdiff(input_path):
io.log_info ("Sorting by absolute difference...")
is_sim = io.input_bool ("Sort by similar? ( y/n ?:help skip:y ) : ", True, help_message="Otherwise sort by dissimilar.")
from nnlib import nnlib
exec( nnlib.import_all( device_config=nnlib.device.Config() ), locals(), globals() )
image_paths = Path_utils.get_image_paths(input_path)
image_paths_len = len(image_paths)
batch_size = 1024
batch_size_remain = image_paths_len % batch_size
i_t = Input ( (256,256,3) )
j_t = Input ( (256,256,3) )
outputs = []
for i in range(batch_size):
outputs += [ K.sum( K.abs(i_t-j_t[i]), axis=[1,2,3] ) ]
func_bs_full = K.function ( [i_t,j_t], outputs)
outputs = []
for i in range(batch_size_remain):
outputs += [ K.sum( K.abs(i_t-j_t[i]), axis=[1,2,3] ) ]
func_bs_remain = K.function ( [i_t,j_t], outputs)
import h5py
db_file_path = Path(tempfile.gettempdir()) / 'sort_cache.hdf5'
db_file = h5py.File( str(db_file_path), "w")
db = db_file.create_dataset("results", (image_paths_len,image_paths_len), compression="gzip")
pg_len = image_paths_len // batch_size
if batch_size_remain != 0:
pg_len += 1
pg_len = int( ( pg_len*pg_len - pg_len ) / 2 + pg_len )
io.progress_bar ("Computing", pg_len)
j=0
while j < image_paths_len:
j_images = [ cv2_imread(x) for x in image_paths[j:j+batch_size] ]
j_images_len = len(j_images)
func = func_bs_remain if image_paths_len-j < batch_size else func_bs_full
i=0
while i < image_paths_len:
if i >= j:
i_images = [ cv2_imread(x) for x in image_paths[i:i+batch_size] ]
i_images_len = len(i_images)
result = func ([i_images,j_images])
db[j:j+j_images_len,i:i+i_images_len] = np.array(result)
io.progress_bar_inc(1)
i += batch_size
db_file.flush()
j += batch_size
io.progress_bar_close()
next_id = 0
sorted = [next_id]
for i in io.progress_bar_generator ( range(image_paths_len-1), "Sorting" ):
id_ar = np.concatenate ( [ db[:next_id,next_id], db[next_id,next_id:] ] )
id_ar = np.argsort(id_ar)
next_id = np.setdiff1d(id_ar, sorted, True)[ 0 if is_sim else -1]
sorted += [next_id]
db_file.close()
db_file_path.unlink()
img_list = [ (image_paths[x],) for x in sorted]
return img_list, []
"""
img_list_len = len(img_list)
@ -932,6 +1011,7 @@ def main (input_path, sort_by_method):
elif sort_by_method == 'origname': img_list, trash_img_list = sort_by_origname (input_path)
elif sort_by_method == 'oneface': img_list, trash_img_list = sort_by_oneface_in_image (input_path)
elif sort_by_method == 'vggface': img_list, trash_img_list = sort_by_vggface (input_path)
elif sort_by_method == 'absdiff': img_list, trash_img_list = sort_by_absdiff (input_path)
elif sort_by_method == 'final': img_list, trash_img_list = sort_final (input_path)
elif sort_by_method == 'final-no-blur': img_list, trash_img_list = sort_final (input_path, include_by_blur=False)