diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 81368b1..28e14f1 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -139,6 +139,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0) default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8) default_gan_dims = self.options['gan_dims'] = self.load_or_def_option('gan_dims', 16) + default_gan_smoothing = self.options['gan_smoothing'] = self.load_or_def_option('gan_smoothing', 0.1) + default_gan_noise = self.options['gan_noise'] = self.load_or_def_option('gan_noise', 0.05) if self.is_first_run() or ask_override: self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.") @@ -158,6 +160,9 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 ) self.options['gan_dims'] = gan_dims + self.options['gan_smoothing'] = np.clip ( io.input_number("GAN label smoothing", default_gan_smoothing, add_info="0 - 0.5", help_message="Uses soft labels with values slightly off from 0/1 for GAN, has a regularizing effect"), 0, 0.5) + self.options['gan_noise'] = np.clip ( io.input_number("GAN noisy labels", default_gan_noise, add_info="0 - 0.5", help_message="Marks some images with the wrong label, helps prevent collapse"), 0, 0.5) + if 'df' in self.options['archi']: self.options['true_face_power'] = np.clip ( io.input_number ("'True face' power.", default_true_face_power, add_info="0.0000 .. 1.0", help_message="Experimental option. Discriminates result face to be more like src face. Higher value - stronger discrimination. Typical value is 0.01 . Comparison - https://i.imgur.com/czScS9q.png"), 0.0, 1.0 ) else: @@ -499,27 +504,29 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... num_labels = self.batch_size for d in tensor.get_shape().as_list()[1:]: num_labels *= d - # num_labels = int(num_labels) + probs = tf.math.log([[noise, 1-noise]]) if label == 1 else tf.math.log([[1-noise, noise]]) x = tf.random.categorical(probs, num_labels) x = tf.cast(x, tf.float32) - # x = x * (1-smoothing) + (smoothing/num_labels) x = tf.math.scalar_mul(1-smoothing, x) x = x + (smoothing/num_labels) x = tf.reshape(x, (self.batch_size,) + tensor.shape[1:]) return x - gpu_pred_src_src_d_ones = get_smooth_noisy_labels(1, gpu_pred_src_src_d) - gpu_pred_src_src_d_zeros = get_smooth_noisy_labels(0, gpu_pred_src_src_d) + smoothing = self.options['gan_smoothing'] + noise = self.options['gan_noise'] - gpu_pred_src_src_d2_ones = get_smooth_noisy_labels(1, gpu_pred_src_src_d2) - gpu_pred_src_src_d2_zeros = get_smooth_noisy_labels(0, gpu_pred_src_src_d2) + gpu_pred_src_src_d_ones = get_smooth_noisy_labels(1, gpu_pred_src_src_d, smoothing=smoothing, noise=noise) + gpu_pred_src_src_d_zeros = get_smooth_noisy_labels(0, gpu_pred_src_src_d, smoothing=smoothing, noise=noise) + + gpu_pred_src_src_d2_ones = get_smooth_noisy_labels(1, gpu_pred_src_src_d2, smoothing=smoothing, noise=noise) + gpu_pred_src_src_d2_zeros = get_smooth_noisy_labels(0, gpu_pred_src_src_d2, smoothing=smoothing, noise=noise) gpu_target_src_d, \ gpu_target_src_d2 = self.D_src(gpu_target_src_masked_opt) - gpu_target_src_d_ones = get_smooth_noisy_labels(1, gpu_target_src_d) - gpu_target_src_d2_ones = get_smooth_noisy_labels(1, gpu_target_src_d2) + gpu_target_src_d_ones = get_smooth_noisy_labels(1, gpu_target_src_d, smoothing=smoothing, noise=noise) + gpu_target_src_d2_ones = get_smooth_noisy_labels(1, gpu_target_src_d2, smoothing=smoothing, noise=noise) gpu_D_src_dst_loss = (DLoss(gpu_target_src_d_ones , gpu_target_src_d) + \ DLoss(gpu_pred_src_src_d_zeros , gpu_pred_src_src_d) ) * 0.5 + \