add morph power option to interactive merger, side effect overwrites key bindings of image color degrade!

This commit is contained in:
J\Jan 2021-06-15 21:13:34 +02:00
commit cfc3ad8878
6 changed files with 466 additions and 8 deletions

View file

@ -14,7 +14,7 @@ from core.joblib import MPClassFuncOnDemand, MPFunc
from core.leras import nn
from DFLIMG import DFLIMG
from facelib import FaceEnhancer, FaceType, LandmarksProcessor, XSegNet
from merger import FrameInfo, InteractiveMergerSubprocessor, MergerConfig
from merger import FrameInfo, InteractiveMergerSubprocessor, MergerConfig, MergerConfigMaskedMorph
def main (model_class_name=None,
@ -78,7 +78,7 @@ def main (model_class_name=None,
input_path_image_paths = pathex.get_image_paths(input_path)
if cfg.type == MergerConfig.TYPE_MASKED:
if cfg.type == MergerConfig.TYPE_MASKED or cfg.type == MergerConfig.TYPE_MASKED_MORPH:
if not aligned_path.exists():
io.log_err('Aligned directory not found. Please ensure it exists.')
return

View file

@ -11,7 +11,7 @@ from core import imagelib, pathex
from core.cv2ex import *
from core.interact import interact as io
from core.joblib import Subprocessor
from merger import MergeFaceAvatar, MergeMasked, MergerConfig
from merger import MergeFaceAvatar, MergeMasked, MergeMaskedMorph, MergerConfig
from .MergerScreen import Screen, ScreenManager
@ -105,6 +105,7 @@ class InteractiveMergerSubprocessor(Subprocessor):
else:
if cfg.type == MergerConfig.TYPE_MASKED:
try:
final_img = MergeMasked (self.predictor_func, self.predictor_input_shape,
face_enhancer_func=self.face_enhancer_func,
xseg_256_extract_func=self.xseg_256_extract_func,
@ -116,6 +117,21 @@ class InteractiveMergerSubprocessor(Subprocessor):
raise Subprocessor.SilenceException
else:
raise Exception( f'Error while merging file [{filepath}]: {e_str}' )
elif cfg.type == MergerConfig.TYPE_MASKED_MORPH:
try:
final_img = MergeMaskedMorph (self.predictor_func, self.predictor_input_shape,
face_enhancer_func=self.face_enhancer_func,
xseg_256_extract_func=self.xseg_256_extract_func,
cfg=cfg,
frame_info=frame_info)
except Exception as e:
e_str = traceback.format_exc()
if 'MemoryError' in e_str:
raise Subprocessor.SilenceException
else:
raise Exception( f'Error while merging file [{filepath}]: {e_str}' )
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
final_img = MergeFaceAvatar (self.predictor_func, self.predictor_input_shape,
@ -290,6 +306,7 @@ class InteractiveMergerSubprocessor(Subprocessor):
help_images = {
MergerConfig.TYPE_MASKED : cv2_imread ( str(Path(__file__).parent / 'gfx' / 'help_merger_masked.jpg') ),
MergerConfig.TYPE_FACE_AVATAR : cv2_imread ( str(Path(__file__).parent / 'gfx' / 'help_merger_face_avatar.jpg') ),
MergerConfig.TYPE_MASKED_MORPH : cv2_imread ( str(Path(__file__).parent / 'gfx' / 'help_merger_masked.jpg') ),
}
self.main_screen = Screen(initial_scale_to_width=1368, image=None, waiting_icon=True)
@ -332,7 +349,17 @@ class InteractiveMergerSubprocessor(Subprocessor):
'c' : lambda cfg,shift_pressed: cfg.toggle_color_transfer_mode(),
'n' : lambda cfg,shift_pressed: cfg.toggle_sharpen_mode(),
}
#TODO remove side effects
self.masked_morph_keys_funcs = self.masked_keys_funcs.copy()
self.masked_morph_keys_funcs.update({
'p' : lambda cfg,shift_pressed: cfg.add_morph_power(1 if not shift_pressed else 5),
';' : lambda cfg,shift_pressed: cfg.add_morph_power(-1),
':' : lambda cfg,shift_pressed: cfg.add_morph_power(-5)})
self.masked_keys = list(self.masked_keys_funcs.keys())
self.masked_morph_keys = list(self.masked_morph_keys_funcs.keys())
#overridable optional
def on_clients_finalized(self):
@ -417,7 +444,7 @@ class InteractiveMergerSubprocessor(Subprocessor):
self.is_interactive_quitting = True
elif self.screen_manager.get_current() is self.main_screen:
if self.merger_config.type == MergerConfig.TYPE_MASKED and chr_key in self.masked_keys:
if (self.merger_config.type == MergerConfig.TYPE_MASKED and chr_key in self.masked_keys) or (self.merger_config.type == MergerConfig.TYPE_MASKED_MORPH and chr_key in self.masked_morph_keys):
self.process_remain_frames = False
if cur_frame is not None:
@ -426,6 +453,9 @@ class InteractiveMergerSubprocessor(Subprocessor):
if cfg.type == MergerConfig.TYPE_MASKED:
self.masked_keys_funcs[chr_key](cfg, shift_pressed)
if cfg.type == MergerConfig.TYPE_MASKED_MORPH:
self.masked_morph_keys_funcs[chr_key](cfg, shift_pressed)
if prev_cfg != cfg:
io.log_info ( cfg.to_string(cur_frame.frame_info.filepath.name) )

View file

@ -351,3 +351,344 @@ def MergeMasked (predictor_func,
final_img = np.concatenate ( [final_img, final_mask], -1)
return (final_img*255).astype(np.uint8)
def MergeMaskedMorph (predictor_func,
predictor_input_shape,
face_enhancer_func,
xseg_256_extract_func,
cfg,
frame_info):
img_bgr_uint8 = cv2_imread(frame_info.filepath)
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
outs = []
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
out_img, out_img_merging_mask = MergeMaskedFaceMorph (predictor_func, predictor_input_shape, face_enhancer_func, xseg_256_extract_func, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
outs += [ (out_img, out_img_merging_mask) ]
#Combining multiple face outputs
final_img = None
final_mask = None
for img, merging_mask in outs:
h,w,c = img.shape
if final_img is None:
final_img = img
final_mask = merging_mask
else:
final_img = final_img*(1-merging_mask) + img*merging_mask
final_mask = np.clip (final_mask + merging_mask, 0, 1 )
final_img = np.concatenate ( [final_img, final_mask], -1)
return (final_img*255).astype(np.uint8)
def MergeMaskedFaceMorph (predictor_func, predictor_input_shape,
face_enhancer_func,
xseg_256_extract_func,
cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
input_size = predictor_input_shape[0]
mask_subres_size = input_size*4
output_size = input_size
if cfg.super_resolution_power != 0:
output_size *= 4
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
if mask_subres_size == output_size:
face_mask_output_mat = face_output_mat
else:
face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)
predictor_input_bgr = cv2.resize (dst_face_bgr, (input_size,input_size) )
predicted = predictor_func (predictor_input_bgr, (cfg.morph_power / 100.0))
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
prd_face_dst_mask_a_0 = np.clip (predicted[2], 0, 1.0)
if cfg.super_resolution_power != 0:
prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr, is_tanh=True, preserve_size=False)
mod = cfg.super_resolution_power / 100.0
prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + prd_face_bgr_enhanced*mod
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
if cfg.super_resolution_power != 0:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
prd_face_dst_mask_a_0 = cv2.resize (prd_face_dst_mask_a_0, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
if cfg.mask_mode == 0: #full
wrk_face_mask_a_0 = np.ones_like(dst_face_mask_a_0)
elif cfg.mask_mode == 1: #dst
wrk_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
elif cfg.mask_mode == 2: #learned-prd
wrk_face_mask_a_0 = prd_face_mask_a_0
elif cfg.mask_mode == 3: #learned-dst
wrk_face_mask_a_0 = prd_face_dst_mask_a_0
elif cfg.mask_mode == 4: #learned-prd*learned-dst
wrk_face_mask_a_0 = prd_face_mask_a_0*prd_face_dst_mask_a_0
elif cfg.mask_mode == 5: #learned-prd+learned-dst
wrk_face_mask_a_0 = np.clip( prd_face_mask_a_0+prd_face_dst_mask_a_0, 0, 1)
elif cfg.mask_mode >= 6 and cfg.mask_mode <= 9: #XSeg modes
if cfg.mask_mode == 6 or cfg.mask_mode == 8 or cfg.mask_mode == 9:
# obtain XSeg-prd
prd_face_xseg_bgr = cv2.resize (prd_face_bgr, (xseg_input_size,)*2, interpolation=cv2.INTER_CUBIC)
prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
X_prd_face_mask_a_0 = cv2.resize ( prd_face_xseg_mask, (output_size, output_size), interpolation=cv2.INTER_CUBIC)
if cfg.mask_mode >= 7 and cfg.mask_mode <= 9:
# obtain XSeg-dst
xseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
dst_face_xseg_bgr = cv2.warpAffine(img_bgr, xseg_mat, (xseg_input_size,)*2, flags=cv2.INTER_CUBIC )
dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
X_dst_face_mask_a_0 = cv2.resize (dst_face_xseg_mask, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
if cfg.mask_mode == 6: #'XSeg-prd'
wrk_face_mask_a_0 = X_prd_face_mask_a_0
elif cfg.mask_mode == 7: #'XSeg-dst'
wrk_face_mask_a_0 = X_dst_face_mask_a_0
elif cfg.mask_mode == 8: #'XSeg-prd*XSeg-dst'
wrk_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
elif cfg.mask_mode == 9: #learned-prd*learned-dst*XSeg-prd*XSeg-dst
wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0
wrk_face_mask_a_0[ wrk_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
# resize to mask_subres_size
if wrk_face_mask_a_0.shape[0] != mask_subres_size:
wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (mask_subres_size, mask_subres_size), interpolation=cv2.INTER_CUBIC)
# process mask in local predicted space
if 'raw' not in cfg.mode:
# add zero pad
wrk_face_mask_a_0 = np.pad (wrk_face_mask_a_0, input_size)
ero = cfg.erode_mask_modifier
blur = cfg.blur_mask_modifier
if ero > 0:
wrk_face_mask_a_0 = cv2.erode(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
wrk_face_mask_a_0 = cv2.dilate(wrk_face_mask_a_0, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
# clip eroded/dilated mask in actual predict area
# pad with half blur size in order to accuratelly fade to zero at the boundary
clip_size = input_size + blur // 2
wrk_face_mask_a_0[:clip_size,:] = 0
wrk_face_mask_a_0[-clip_size:,:] = 0
wrk_face_mask_a_0[:,:clip_size] = 0
wrk_face_mask_a_0[:,-clip_size:] = 0
if blur > 0:
blur = blur + (1-blur % 2)
wrk_face_mask_a_0 = cv2.GaussianBlur(wrk_face_mask_a_0, (blur, blur) , 0)
wrk_face_mask_a_0 = wrk_face_mask_a_0[input_size:-input_size,input_size:-input_size]
wrk_face_mask_a_0 = np.clip(wrk_face_mask_a_0, 0, 1)
img_face_mask_a = cv2.warpAffine( wrk_face_mask_a_0, face_mask_output_mat, img_size, np.zeros(img_bgr.shape[0:2], dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )[...,None]
img_face_mask_a = np.clip (img_face_mask_a, 0.0, 1.0)
img_face_mask_a [ img_face_mask_a < (1.0/255.0) ] = 0.0 # get rid of noise
if wrk_face_mask_a_0.shape[0] != output_size:
wrk_face_mask_a_0 = cv2.resize (wrk_face_mask_a_0, (output_size,output_size), interpolation=cv2.INTER_CUBIC)
wrk_face_mask_a = wrk_face_mask_a_0[...,None]
out_img = None
out_merging_mask_a = None
if cfg.mode == 'original':
return img_bgr, img_face_mask_a
elif 'raw' in cfg.mode:
if cfg.mode == 'raw-rgb':
out_img_face = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
out_img_face_mask = cv2.warpAffine( np.ones_like(prd_face_bgr), face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
out_img = img_bgr*(1-out_img_face_mask) + out_img_face*out_img_face_mask
out_merging_mask_a = img_face_mask_a
elif cfg.mode == 'raw-predict':
out_img = prd_face_bgr
out_merging_mask_a = wrk_face_mask_a
else:
raise ValueError(f"undefined raw type {cfg.mode}")
out_img = np.clip (out_img, 0.0, 1.0 )
else:
# Process if the mask meets minimum size
maxregion = np.argwhere( img_face_mask_a >= 0.1 )
if maxregion.size != 0:
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx
leny = maxy - miny
if min(lenx,leny) >= 4:
wrk_face_mask_area_a = wrk_face_mask_a.copy()
wrk_face_mask_area_a[wrk_face_mask_area_a>0] = 1.0
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1: #rct
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8),
np.clip( dst_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8), )
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 3: #mkl
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 4: #mkl-m
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
elif cfg.color_transfer_mode == 5: #idt
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 6: #idt-m
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
elif cfg.color_transfer_mode == 7: #sot-m
prd_face_bgr = imagelib.color_transfer_sot (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a, steps=10, batch_size=30)
prd_face_bgr = np.clip (prd_face_bgr, 0.0, 1.0)
elif cfg.color_transfer_mode == 8: #mix-m
prd_face_bgr = imagelib.color_transfer_mix (prd_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
if cfg.mode == 'hist-match':
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
if cfg.masked_hist_match:
hist_mask_a *= wrk_face_mask_area_a
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
hist_match_1 = prd_face_bgr*hist_mask_a + white
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
hist_match_2 = dst_face_bgr*hist_mask_a + white
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold ).astype(dtype=np.float32)
if 'seamless' in cfg.mode:
#mask used for cv2.seamlessClone
img_face_seamless_mask_a = None
for i in range(1,10):
a = img_face_mask_a > i / 10.0
if len(np.argwhere(a)) == 0:
continue
img_face_seamless_mask_a = img_face_mask_a.copy()
img_face_seamless_mask_a[a] = 1.0
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
break
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
out_img = np.clip(out_img, 0.0, 1.0)
if 'seamless' in cfg.mode:
try:
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
s_maskx, s_masky = int(l+w/2), int(t+h/2)
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
out_img = out_img.astype(dtype=np.float32) / 255.0
except Exception as e:
#seamlessClone may fail in some cases
e_str = traceback.format_exc()
if 'MemoryError' in e_str:
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
else:
print ("Seamless fail: " + e_str)
cfg_mp = cfg.motion_blur_power / 100.0
out_img = img_bgr*(1-img_face_mask_a) + (out_img*img_face_mask_a)
if ('seamless' in cfg.mode and cfg.color_transfer_mode != 0) or \
cfg.mode == 'seamless-hist-match' or \
cfg_mp != 0 or \
cfg.blursharpen_amount != 0 or \
cfg.image_denoise_power != 0 or \
cfg.bicubic_degrade_power != 0:
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1:
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip(out_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8),
np.clip(dst_face_bgr*wrk_face_mask_area_a*255, 0, 255).astype(np.uint8) )
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 3: #mkl
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 4: #mkl-m
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
elif cfg.color_transfer_mode == 5: #idt
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 6: #idt-m
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
elif cfg.color_transfer_mode == 7: #sot-m
out_face_bgr = imagelib.color_transfer_sot (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a, steps=10, batch_size=30)
out_face_bgr = np.clip (out_face_bgr, 0.0, 1.0)
elif cfg.color_transfer_mode == 8: #mix-m
out_face_bgr = imagelib.color_transfer_mix (out_face_bgr*wrk_face_mask_area_a, dst_face_bgr*wrk_face_mask_area_a)
if cfg.mode == 'seamless-hist-match':
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
if cfg_mp != 0:
k_size = int(frame_info.motion_power*cfg_mp)
if k_size >= 1:
k_size = np.clip (k_size+1, 2, 50)
if cfg.super_resolution_power != 0:
k_size *= 2
out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
if cfg.blursharpen_amount != 0:
out_face_bgr = imagelib.blursharpen ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
if cfg.image_denoise_power != 0:
n = cfg.image_denoise_power
while n > 0:
img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
if int(n / 100) != 0:
img_bgr = img_bgr_denoised
else:
pass_power = (n % 100) / 100.0
img_bgr = img_bgr*(1.0-pass_power)+img_bgr_denoised*pass_power
n = max(n-10,0)
if cfg.bicubic_degrade_power != 0:
p = 1.0 - cfg.bicubic_degrade_power / 101.0
img_bgr_downscaled = cv2.resize (img_bgr, ( int(img_size[0]*p), int(img_size[1]*p ) ), interpolation=cv2.INTER_CUBIC)
img_bgr = cv2.resize (img_bgr_downscaled, img_size, interpolation=cv2.INTER_CUBIC)
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
out_img = np.clip( img_bgr*(1-img_face_mask_a) + (new_out*img_face_mask_a) , 0, 1.0 )
if cfg.color_degrade_power != 0:
out_img_reduced = imagelib.reduce_colors(out_img, 256)
if cfg.color_degrade_power == 100:
out_img = out_img_reduced
else:
alpha = cfg.color_degrade_power / 100.0
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
out_merging_mask_a = img_face_mask_a
if out_img is None:
out_img = img_bgr.copy()
return out_img, out_merging_mask_a

View file

@ -9,10 +9,12 @@ class MergerConfig(object):
TYPE_NONE = 0
TYPE_MASKED = 1
TYPE_FACE_AVATAR = 2
####
TYPE_IMAGE = 3
TYPE_IMAGE_WITH_LANDMARKS = 4
TYPE_MASKED_MORPH = 5
def __init__(self, type=0,
sharpen_mode=0,
@ -327,3 +329,87 @@ class MergerConfigFaceAvatar(MergerConfig):
f"add_source_image : {self.add_source_image}\n") + \
super().to_string(filename) + "================"
class MergerConfigMaskedMorph(MergerConfigMasked):
#override
def __init__(self, face_type=FaceType.WHOLE_FACE,
default_mode = 'overlay',
mode='overlay',
masked_hist_match=True,
hist_match_threshold = 238,
mask_mode = 4,
erode_mask_modifier = 0,
blur_mask_modifier = 0,
motion_blur_power = 0,
output_face_scale = 0,
super_resolution_power = 0,
color_transfer_mode = ctm_str_dict['rct'],
image_denoise_power = 0,
bicubic_degrade_power = 0,
color_degrade_power = 0,
morph_power=100,
**kwargs
):
MergerConfig.__init__(self, type=MergerConfig.TYPE_MASKED_MORPH, **kwargs)
self.face_type = face_type
if self.face_type not in [FaceType.WHOLE_FACE, FaceType.HEAD ]:
raise ValueError("MergerConfigMaskedMorph does not support this type of face.")
self.default_mode = default_mode
#default changeable params
if mode not in mode_str_dict:
mode = mode_dict[1]
self.mode = mode
self.masked_hist_match = masked_hist_match
self.hist_match_threshold = hist_match_threshold
self.mask_mode = mask_mode
self.erode_mask_modifier = erode_mask_modifier
self.blur_mask_modifier = blur_mask_modifier
self.motion_blur_power = motion_blur_power
self.output_face_scale = output_face_scale
self.super_resolution_power = super_resolution_power
self.color_transfer_mode = color_transfer_mode
self.image_denoise_power = image_denoise_power
self.bicubic_degrade_power = bicubic_degrade_power
self.color_degrade_power = color_degrade_power
self.morph_power = morph_power
#override
def to_string(self, filename):
r = super().to_string(filename)
if r.endswith('================'):
r = r[:-16]
r += f"""morph_power: {self.morph_power}\n"""
r += "================"
return r
#override
def ask_settings(self):
super().ask_settings()
self.morph_power = np.clip ( io.input_int ("Morph power in percent (overwrites morph factor)", 0, add_info="0..100"), 0, 100)
#override
def add_morph_power(self, diff):
self.morph_power = np.clip ( self.morph_power+diff , 0, 100)
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, MergerConfigMaskedMorph):
return super().__eq__(other) and \
self.morph_power == other.morph_power
return False

View file

@ -1,5 +1,6 @@
from .FrameInfo import FrameInfo
from .MergerConfig import MergerConfig, MergerConfigMasked, MergerConfigFaceAvatar
from .MergerConfig import MergerConfig, MergerConfigMasked, MergerConfigFaceAvatar, MergerConfigMaskedMorph
from .MergeMasked import MergeMasked
from .MergeMasked import MergeMaskedMorph
from .MergeAvatar import MergeFaceAvatar
from .InteractiveMergerSubprocessor import InteractiveMergerSubprocessor

View file

@ -800,11 +800,11 @@ class AMPModel(ModelBase):
def get_MergerConfig(self):
morph_factor = np.clip ( io.input_number ("Morph factor", 0.75, add_info="0.0 .. 1.0"), 0.0, 1.0 )
def predictor_morph(face):
return self.predictor_func(face, morph_factor)
def predictor_morph(face, func_morph_factor=morph_factor):
return self.predictor_func(face, func_morph_factor)
import merger
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay')
return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMaskedMorph(face_type=self.face_type, default_mode = 'overlay')
Model = AMPModel