mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 04:59:27 -07:00
Merge remote-tracking branch 'origin/config_files' into amp_test_config
This commit is contained in:
commit
cbdf9f05c9
2 changed files with 15 additions and 8 deletions
|
@ -13,6 +13,13 @@ from samplelib import *
|
|||
from pathlib import Path
|
||||
|
||||
class QModel(ModelBase):
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
if self.is_first_run() or ask_override:
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_batch_size()
|
||||
|
||||
#override
|
||||
def on_initialize(self):
|
||||
device_config = nn.getCurrentDeviceConfig()
|
||||
|
@ -82,7 +89,7 @@ class QModel(ModelBase):
|
|||
if self.is_training:
|
||||
# Adjust batch size for multiple GPU
|
||||
gpu_count = max(1, len(devices) )
|
||||
bs_per_gpu = max(1, 4 // gpu_count)
|
||||
bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
|
||||
self.set_batch_size( gpu_count*bs_per_gpu)
|
||||
|
||||
# Compute losses per GPU
|
||||
|
|
|
@ -20,7 +20,7 @@ class XSegModel(ModelBase):
|
|||
|
||||
#override
|
||||
def on_initialize_options(self):
|
||||
ask_override = self.ask_override()
|
||||
ask_override = False if self.read_from_conf else self.ask_override()
|
||||
|
||||
if not self.is_first_run() and ask_override:
|
||||
if io.input_bool(f"Restart training?", False, help_message="Reset model weights and start training from scratch."):
|
||||
|
@ -30,11 +30,13 @@ class XSegModel(ModelBase):
|
|||
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
|
||||
|
||||
if self.is_first_run():
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
|
||||
|
||||
if self.is_first_run() or ask_override:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
if (self.read_from_conf and not self.config_file_exists) or not self.read_from_conf:
|
||||
self.ask_batch_size(4, range=[2,16])
|
||||
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
|
||||
|
||||
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
|
||||
raise Exception("pretraining_data_path is not defined")
|
||||
|
@ -53,13 +55,11 @@ class XSegModel(ModelBase):
|
|||
|
||||
self.resolution = resolution = 256
|
||||
|
||||
|
||||
self.face_type = {'h' : FaceType.HALF,
|
||||
'mf' : FaceType.MID_FULL,
|
||||
'f' : FaceType.FULL,
|
||||
'wf' : FaceType.WHOLE_FACE,
|
||||
'head' : FaceType.HEAD}[ self.options['face_type'] ]
|
||||
|
||||
|
||||
place_model_on_cpu = len(devices) == 0
|
||||
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
|
||||
|
@ -287,4 +287,4 @@ class XSegModel(ModelBase):
|
|||
config_path = Path(__file__).parent.absolute() / Path("config_schema.json")
|
||||
return config_path
|
||||
|
||||
Model = XSegModel
|
||||
Model = XSegModel
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue