diff --git a/facelib/PoseEstimator.py b/facelib/PoseEstimator.py index b0011ad..7939d90 100644 --- a/facelib/PoseEstimator.py +++ b/facelib/PoseEstimator.py @@ -43,7 +43,7 @@ class PoseEstimator(object): mean_t, logvar_t = input return mean_t + K.exp(0.5*logvar_t)*K.random_normal(K.shape(mean_t)) - self.BVAEResampler = Lambda ( lambda x: x[0] + K.exp(0.5*x[1])*K.random_normal(K.shape(x[0])), + self.BVAEResampler = Lambda ( lambda x: x[0] + K.random_normal(K.shape(x[0])) * K.sqrt(K.exp(0.5*x[1])), output_shape=K.int_shape(self.encoder.outputs[0])[1:] ) inp_t = Input (self.input_bgr_shape) @@ -99,24 +99,21 @@ class PoseEstimator(object): pyr_loss += [ a*K.mean( K.square ( inp_pyrs_t[i] - pyrs_t[i]) ) ] def BVAELoss(beta=4): - #keep in mind loss per sample, not per minibatch def func(input): mean_t, logvar_t = input - return beta * K.mean ( K.sum( -0.5*(1 + logvar_t - K.exp(logvar_t) - K.square(mean_t)), axis=1 ), axis=0, keepdims=True ) + return beta * K.mean ( K.sum( 0.5*(K.exp(logvar_t)+ K.square(mean_t)-logvar_t-1), axis=1) ) return func - BVAE_loss = BVAELoss(4)([mean_t, logvar_t])#beta * K.mean ( K.sum( -0.5*(1 + logvar_t - K.exp(logvar_t) - K.square(mean_t)), axis=1 ), axis=0, keepdims=True ) - - - bgr_loss = K.mean(K.square(inp_real_t-bgr_t), axis=0, keepdims=True) - - #train_loss = BVAE_loss + bgr_loss + BVAE_loss = BVAELoss()([mean_t, logvar_t]) + bgr_loss = K.mean(K.sum(K.abs(inp_real_t-bgr_t), axis=[1,2,3])) + + G_loss = BVAE_loss+bgr_loss pyr_loss = sum(pyr_loss) self.train = K.function ([inp_t, inp_real_t], - [ K.mean (BVAE_loss)+K.mean(bgr_loss) ], Adam(lr=0.0005, beta_1=0.9, beta_2=0.999).get_updates( [BVAE_loss, bgr_loss], self.encoder.trainable_weights+self.decoder.trainable_weights ) ) + [ G_loss ], Adam(lr=0.0005, beta_1=0.9, beta_2=0.999).get_updates( G_loss, self.encoder.trainable_weights+self.decoder.trainable_weights ) ) self.train_l = K.function ([inp_t] + inp_pyrs_t, [pyr_loss], Adam(lr=0.0001).get_updates( pyr_loss, self.model_l.trainable_weights) ) @@ -140,7 +137,6 @@ class PoseEstimator(object): Model(inp_t, self.model_l(self.BVAEResampler(self.encoder(inp_t))) ).save_weights (str(self.model_weights_path)) def train_on_batch(self, warps, imgs, pyr_tanh, skip_bgr_train=False): - if not skip_bgr_train: bgr_loss, = self.train( [warps, imgs] ) pyr_loss = 0 @@ -198,12 +194,9 @@ class PoseEstimator(object): def EncFlow(ae_dims): exec( nnlib.import_all(), locals(), globals() ) - XConv2D = partial(Conv2D, padding='zero') - - def downscale (dim, **kwargs): def func(x): - return ReLU() ( ( XConv2D(dim, kernel_size=4, strides=2)(x)) ) + return ReLU() ( Conv2D(dim, kernel_size=5, strides=2, padding='same')(x)) return func @@ -236,16 +229,14 @@ class PoseEstimator(object): def DecFlow(resolution, ae_dims): exec( nnlib.import_all(), locals(), globals() ) - XConv2D = partial(Conv2D, padding='zero') - def upscale (dim, strides=2, **kwargs): def func(x): - return ReLU()( ( Conv2DTranspose(dim, kernel_size=4, strides=strides, padding='same')(x)) ) + return ReLU()( ( Conv2DTranspose(dim, kernel_size=3, strides=strides, padding='same')(x)) ) return func def to_bgr (output_nc, **kwargs): def func(x): - return XConv2D(output_nc, kernel_size=5, activation='sigmoid')(x) + return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x) return func upscale = partial(upscale) @@ -278,8 +269,6 @@ class PoseEstimator(object): def LatentFlow(class_nums): exec( nnlib.import_all(), locals(), globals() ) - XConv2D = partial(Conv2D, padding='zero') - def func(latent): x = latent