diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index 820bba0..4dcecd9 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -30,7 +30,7 @@ class SAEHDModel(ModelBase): min_res = 64 max_res = 640 - default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False) + #default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False) default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128) default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f') default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True) @@ -69,7 +69,7 @@ class SAEHDModel(ModelBase): self.ask_random_src_flip() self.ask_random_dst_flip() self.ask_batch_size(suggest_batch_size) - self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.') + #self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.') if self.is_first_run(): resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.") @@ -219,7 +219,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.set_iter(0) adabelief = self.options['adabelief'] - + use_fp16 = False#self.options['use_fp16'] + self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power'] random_warp = False if self.pretrain else self.options['random_warp'] random_src_flip = self.random_src_flip if not self.pretrain else True @@ -262,7 +263,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em') # Initializing model classes - model_archi = nn.DeepFakeArchi(resolution, use_fp16=self.options['use_fp16'], opts=archi_opts) + model_archi = nn.DeepFakeArchi(resolution, use_fp16=use_fp16, opts=archi_opts) with tf.device (models_opt_device): if 'df' in archi_type: @@ -303,7 +304,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... if self.is_training: if gan_power != 0: - self.D_src = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], use_fp16=self.options['use_fp16'], name="D_src") + self.D_src = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="D_src") self.model_filename_list += [ [self.D_src, 'GAN.npy'] ] # Initialize optimizers