mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-19 21:13:20 -07:00
fix: typo spelling grammar
This commit is contained in:
parent
f99b8a0842
commit
c71b358b89
10 changed files with 10 additions and 10 deletions
|
@ -19,7 +19,7 @@ def cv2_imread(filename, flags=cv2.IMREAD_UNCHANGED, loader_func=None, verbose=T
|
||||||
return cv2.imdecode(numpyarray, flags)
|
return cv2.imdecode(numpyarray, flags)
|
||||||
except:
|
except:
|
||||||
if verbose:
|
if verbose:
|
||||||
io.log_err(f"Exception occured in cv2_imread : {traceback.format_exc()}")
|
io.log_err(f"Exception occurred in cv2_imread : {traceback.format_exc()}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def cv2_imwrite(filename, img, *args):
|
def cv2_imwrite(filename, img, *args):
|
||||||
|
|
|
@ -225,7 +225,7 @@ class Subprocessor(object):
|
||||||
self.sent_data = None
|
self.sent_data = None
|
||||||
cli.state = 0
|
cli.state = 0
|
||||||
elif op == 'error':
|
elif op == 'error':
|
||||||
#some error occured while process data, returning chunk to on_data_return
|
#some error occurred while process data, returning chunk to on_data_return
|
||||||
err_msg = obj.get('err_msg', None)
|
err_msg = obj.get('err_msg', None)
|
||||||
if err_msg is not None:
|
if err_msg is not None:
|
||||||
io.log_info(f'Error while processing data: {err_msg}')
|
io.log_info(f'Error while processing data: {err_msg}')
|
||||||
|
|
|
@ -118,7 +118,7 @@ class FacesetEnhancerSubprocessor(Subprocessor):
|
||||||
|
|
||||||
return (1, filepath, output_filepath)
|
return (1, filepath, output_filepath)
|
||||||
except:
|
except:
|
||||||
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
|
self.log_err (f"Exception occurred while processing file {filepath}. Error: {traceback.format_exc()}")
|
||||||
|
|
||||||
return (0, filepath, None)
|
return (0, filepath, None)
|
||||||
|
|
||||||
|
|
|
@ -160,7 +160,7 @@ class FacesetResizerSubprocessor(Subprocessor):
|
||||||
|
|
||||||
return (1, filepath, output_filepath)
|
return (1, filepath, output_filepath)
|
||||||
except:
|
except:
|
||||||
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
|
self.log_err (f"Exception occurred while processing file {filepath}. Error: {traceback.format_exc()}")
|
||||||
|
|
||||||
return (0, filepath, None)
|
return (0, filepath, None)
|
||||||
|
|
||||||
|
|
|
@ -88,7 +88,7 @@ def main (model_class_name=None,
|
||||||
try:
|
try:
|
||||||
packed_samples = samplelib.PackedFaceset.load(aligned_path)
|
packed_samples = samplelib.PackedFaceset.load(aligned_path)
|
||||||
except:
|
except:
|
||||||
io.log_err(f"Error occured while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}")
|
io.log_err(f"Error occurred while loading samplelib.PackedFaceset.load {str(aligned_path)}, {traceback.format_exc()}")
|
||||||
|
|
||||||
|
|
||||||
if packed_samples is not None:
|
if packed_samples is not None:
|
||||||
|
|
|
@ -220,7 +220,7 @@ def main(**kwargs):
|
||||||
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e), kwargs=kwargs )
|
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e), kwargs=kwargs )
|
||||||
thread.start()
|
thread.start()
|
||||||
|
|
||||||
e.wait() #Wait for inital load to occur.
|
e.wait() #Wait for initial load to occur.
|
||||||
|
|
||||||
if no_preview:
|
if no_preview:
|
||||||
while True:
|
while True:
|
||||||
|
|
|
@ -578,7 +578,7 @@ class ModelBase(object):
|
||||||
for device in self.device_config.devices:
|
for device in self.device_config.devices:
|
||||||
summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] # GPU hardware device index
|
summary_text += [f'=={"Device index": >{width_name}}: {device.index: <{width_value}}=='] # GPU hardware device index
|
||||||
summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] # GPU name
|
summary_text += [f'=={"Name": >{width_name}}: {device.name: <{width_value}}=='] # GPU name
|
||||||
vram_str = f'{device.total_mem_gb:.2f}GB' # GPU VRAM - Formated as #.## (or ##.##)
|
vram_str = f'{device.total_mem_gb:.2f}GB' # GPU VRAM - Formatred as #.## (or ##.##)
|
||||||
summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
|
summary_text += [f'=={"VRAM": >{width_name}}: {vram_str: <{width_value}}==']
|
||||||
summary_text += [f'=={" "*width_total}==']
|
summary_text += [f'=={" "*width_total}==']
|
||||||
summary_text += [f'=={"="*width_total}==']
|
summary_text += [f'=={"="*width_total}==']
|
||||||
|
|
|
@ -325,7 +325,7 @@ class AMPModel(ModelBase):
|
||||||
for gpu_id in range(gpu_count):
|
for gpu_id in range(gpu_count):
|
||||||
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||||
with tf.device(f'/CPU:0'):
|
with tf.device(f'/CPU:0'):
|
||||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
# slice on CPU, otherwise all batch data will be transferred to GPU first
|
||||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||||
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
||||||
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
||||||
|
|
|
@ -99,7 +99,7 @@ class QModel(ModelBase):
|
||||||
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||||
with tf.device(f'/CPU:0'):
|
with tf.device(f'/CPU:0'):
|
||||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
# slice on CPU, otherwise all batch data will be transferred to GPU first
|
||||||
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
||||||
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
||||||
gpu_target_src = self.target_src [batch_slice,:,:,:]
|
gpu_target_src = self.target_src [batch_slice,:,:,:]
|
||||||
|
|
|
@ -360,7 +360,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
for gpu_id in range(gpu_count):
|
for gpu_id in range(gpu_count):
|
||||||
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
||||||
with tf.device(f'/CPU:0'):
|
with tf.device(f'/CPU:0'):
|
||||||
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
# slice on CPU, otherwise all batch data will be transferred to GPU first
|
||||||
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
||||||
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
||||||
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue