diff --git a/CHANGELOG.md b/CHANGELOG.md
index e6222da..6130890 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -5,11 +5,22 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
-### Added
-- [Random color training option](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/random-color)
-- [MS-SSIM loss training option](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/ms-ssim-loss-2)
### In Progress
+- [MS-SSIM loss training option](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/ms-ssim-loss-2)
- [Freezeable layers (encoder/decoder/etc.)](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/freezable-weights)
+- [GAN stability improvements](https://github.com/faceshiftlabs/DeepFaceLab/tree/feature/gan-updates)
+
+## [1.2.0] - 2020-03-17
+### Added
+- [Random color training option](doc/features/random-color/README.md)
+
+## [1.1.5] - 2020-03-16
+### Fixed
+- Fixed unclosed websocket in Web UI client when exiting
+
+## [1.1.4] - 2020-03-16
+### Fixed
+- Fixed bug when exiting from Web UI
## [1.1.3] - 2020-03-16
### Changed
@@ -34,7 +45,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Reset stale master branch to [seranus/DeepFaceLab](https://github.com/seranus/DeepFaceLab),
21 commits ahead of [iperov/DeepFaceLab](https://github.com/iperov/DeepFaceLab) ([compare](https://github.com/iperov/DeepFaceLab/compare/4818183...seranus:3f5ae05))
-[Unreleased]: https://github.com/olivierlacan/keep-a-changelog/compare/v1.1.2...HEAD
+[Unreleased]: https://github.com/olivierlacan/keep-a-changelog/compare/v1.2.0...HEAD
+[1.2.0]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.5...v1.2.0
+[1.1.5]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.4...v1.1.5
+[1.1.4]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.3...v1.1.4
+[1.1.3]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.2...v1.1.3
[1.1.2]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.1...v1.1.2
[1.1.1]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.1.0...v1.1.1
[1.1.0]: https://github.com/faceshiftlabs/DeepFaceLab/compare/v1.0.0...v1.1.0
diff --git a/core/imagelib/color_transfer.py b/core/imagelib/color_transfer.py
index c605920..7c7a1aa 100644
--- a/core/imagelib/color_transfer.py
+++ b/core/imagelib/color_transfer.py
@@ -92,7 +92,7 @@ def color_transfer_mkl(x0, x1):
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
import scipy.stats
-
+
relaxation = 1 / n_rot
h,w,c = i0.shape
h1,w1,c1 = i1.shape
@@ -381,6 +381,25 @@ def color_augmentation(img):
return (face / 255.0).astype(np.float32)
+def random_lab_rotation(image, seed=None):
+ """
+ Randomly rotates image color around the L axis in LAB colorspace,
+ keeping perceptual lightness constant.
+ """
+ image = cv2.cvtColor(image.astype(np.float32), cv2.COLOR_BGR2LAB)
+ M = np.eye(3)
+ M[1:, 1:] = special_ortho_group.rvs(2, 1, seed)
+ image = image.dot(M)
+ l, a, b = cv2.split(image)
+ l = np.clip(l, 0, 100)
+ a = np.clip(a, -127, 127)
+ b = np.clip(b, -127, 127)
+ image = cv2.merge([l, a, b])
+ image = cv2.cvtColor(image.astype(np.float32), cv2.COLOR_LAB2BGR)
+ np.clip(image, 0, 1, out=image)
+ return image
+
+
def random_lab(image):
""" Perform random color/lightness adjustment in L*a*b* colorspace """
amount_l = 30 / 100
@@ -416,4 +435,4 @@ def random_clahe(image):
tileGridSize=(grid_size, grid_size))
for chan in range(3):
image[:, :, chan] = clahe.apply(image[:, :, chan])
- return image
\ No newline at end of file
+ return image
diff --git a/doc/features/random-color/README.md b/doc/features/random-color/README.md
new file mode 100644
index 0000000..8d8298c
--- /dev/null
+++ b/doc/features/random-color/README.md
@@ -0,0 +1,22 @@
+# Random Color option
+
+Helps train the model to generalize perceptual color and lightness, and improves color transfer between src and dst.
+
+- [DESCRIPTION](#description)
+- [USAGE](#usage)
+
+
+
+## DESCRIPTION
+
+Converts images to [CIE L\*a\*b* colorspace](https://en.wikipedia.org/wiki/CIELAB_color_space),
+and then randomly rotates around the `L*` axis. While the perceptual lightness stays constant, only the `a*` and `b*`
+color channels are modified. After rotation, converts back to BGR (blue/green/red) colorspace.
+
+If visualized using the [CIE L\*a\*b* cylindical model](https://en.wikipedia.org/wiki/CIELAB_color_space#Cylindrical_model),
+this is a random rotation of `h°` (hue angle, angle of the hue in the CIELAB color wheel),
+maintaining the same `C*` (chroma, relative saturation).
+
+## USAGE
+
+`[n] Random color ( y/n ?:help ) : y`
diff --git a/doc/features/random-color/example.jpeg b/doc/features/random-color/example.jpeg
new file mode 100644
index 0000000..2a69632
Binary files /dev/null and b/doc/features/random-color/example.jpeg differ
diff --git a/flaskr/templates/index.html b/flaskr/templates/index.html
index d97326f..4ab78dd 100644
--- a/flaskr/templates/index.html
+++ b/flaskr/templates/index.html
@@ -13,12 +13,24 @@
diff --git a/mainscripts/Trainer.py b/mainscripts/Trainer.py
index 507bc9c..dfa6d9d 100644
--- a/mainscripts/Trainer.py
+++ b/mainscripts/Trainer.py
@@ -446,7 +446,7 @@ def main(**kwargs):
while True:
if not c2s.empty():
item = c2s.get()
- op = input['op']
+ op = item['op']
if op == 'show':
is_waiting_preview = False
loss_history = item['loss_history'] if 'loss_history' in item.keys() else None
diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py
index afdba77..67dbe95 100644
--- a/models/Model_SAEHD/Model.py
+++ b/models/Model_SAEHD/Model.py
@@ -60,6 +60,7 @@ class SAEHDModel(ModelBase):
default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0)
default_bg_style_power = self.options['bg_style_power'] = self.load_or_def_option('bg_style_power', 0.0)
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
+ default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
@@ -171,6 +172,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn the area outside mask of the predicted face to be the same as dst. If you want to use this option with 'whole_face' you have to use XSeg trained mask. For whole_face you have to use XSeg trained mask. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best. FS aug adds random color to dst and src")
+ self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly.")
@@ -672,11 +674,13 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if ct_mode == 'fs-aug':
fs_aug = 'fs-aug'
+ channel_type = SampleProcessor.ChannelType.LAB_RAND_TRANSFORM if self.options['random_color'] else SampleProcessor.ChannelType.BGR
+
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
- output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
- {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
+ output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
+ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
@@ -685,8 +689,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
- output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
- {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
+ output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
+ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
diff --git a/samplelib/SampleProcessor.py b/samplelib/SampleProcessor.py
index 2e514dc..2faa182 100644
--- a/samplelib/SampleProcessor.py
+++ b/samplelib/SampleProcessor.py
@@ -8,6 +8,7 @@ import numpy as np
from core import imagelib
from core.cv2ex import *
from core.imagelib import sd
+from core.imagelib.color_transfer import random_lab_rotation
from facelib import FaceType, LandmarksProcessor
@@ -26,6 +27,8 @@ class SampleProcessor(object):
BGR = 1 #BGR
G = 2 #Grayscale
GGG = 3 #3xGrayscale
+ LAB_RAND_TRANSFORM = 4 # LAB random transform
+
class FaceMaskType(IntEnum):
NONE = 0
@@ -56,18 +59,18 @@ class SampleProcessor(object):
sample_landmarks = sample.landmarks
ct_sample_bgr = None
h,w,c = sample_bgr.shape
-
- def get_full_face_mask():
- xseg_mask = sample.get_xseg_mask()
- if xseg_mask is not None:
+
+ def get_full_face_mask():
+ xseg_mask = sample.get_xseg_mask()
+ if xseg_mask is not None:
if xseg_mask.shape[0] != h or xseg_mask.shape[1] != w:
- xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)
+ xseg_mask = cv2.resize(xseg_mask, (w,h), interpolation=cv2.INTER_CUBIC)
xseg_mask = imagelib.normalize_channels(xseg_mask, 1)
return np.clip(xseg_mask, 0, 1)
else:
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
return np.clip(full_face_mask, 0, 1)
-
+
def get_eyes_mask():
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
# set eye masks to 1-2
@@ -86,25 +89,25 @@ class SampleProcessor(object):
if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
-
- params_per_resolution = {}
- warp_rnd_state = np.random.RandomState (sample_rnd_seed-1)
+
+ params_per_resolution = {}
+ warp_rnd_state = np.random.RandomState (sample_rnd_seed-1)
for opts in output_sample_types:
resolution = opts.get('resolution', None)
if resolution is None:
continue
- params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
- sample_process_options.random_flip,
- rotation_range=sample_process_options.rotation_range,
- scale_range=sample_process_options.scale_range,
- tx_range=sample_process_options.tx_range,
- ty_range=sample_process_options.ty_range,
+ params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
+ sample_process_options.random_flip,
+ rotation_range=sample_process_options.rotation_range,
+ scale_range=sample_process_options.scale_range,
+ tx_range=sample_process_options.tx_range,
+ ty_range=sample_process_options.ty_range,
rnd_state=warp_rnd_state)
outputs_sample = []
for opts in output_sample_types:
sample_type = opts.get('sample_type', SPST.NONE)
- channel_type = opts.get('channel_type', SPCT.NONE)
+ channel_type = opts.get('channel_type', SPCT.NONE)
resolution = opts.get('resolution', 0)
nearest_resize_to = opts.get('nearest_resize_to', None)
warp = opts.get('warp', False)
@@ -118,29 +121,29 @@ class SampleProcessor(object):
normalize_tanh = opts.get('normalize_tanh', False)
ct_mode = opts.get('ct_mode', None)
data_format = opts.get('data_format', 'NHWC')
-
- if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
+
+ if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
border_replicate = False
elif sample_type == SPST.FACE_IMAGE:
border_replicate = True
-
-
+
+
border_replicate = opts.get('border_replicate', border_replicate)
borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
-
-
+
+
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
- if not is_face_sample:
+ if not is_face_sample:
raise ValueError("face_samples should be provided for sample_type FACE_*")
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
face_type = opts.get('face_type', None)
face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
-
+
if face_type is None:
raise ValueError("face_type must be defined for face samples")
- if sample_type == SPST.FACE_MASK:
+ if sample_type == SPST.FACE_MASK:
if face_mask_type == SPFMT.FULL_FACE:
img = get_full_face_mask()
elif face_mask_type == SPFMT.EYES:
@@ -149,42 +152,42 @@ class SampleProcessor(object):
# sets both eyes and mouth mask parts
img = get_full_face_mask()
mask = img.copy()
- mask[mask != 0.0] = 1.0
+ mask[mask != 0.0] = 1.0
eye_mask = get_eyes_mask() * mask
img = np.where(eye_mask > 1, eye_mask, img)
mouth_mask = get_mouth_mask() * mask
- img = np.where(mouth_mask > 2, mouth_mask, img)
+ img = np.where(mouth_mask > 2, mouth_mask, img)
else:
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
if sample_face_type == FaceType.MARK_ONLY:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
-
+
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
img = cv2.resize( img, (resolution,resolution), interpolation=cv2.INTER_LINEAR )
else:
if face_type != sample_face_type:
- mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
+ mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
else:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_LINEAR )
-
+
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
-
+
if len(img.shape) == 2:
img = img[...,None]
-
+
if channel_type == SPCT.G:
out_sample = img.astype(np.float32)
else:
raise ValueError("only channel_type.G supported for the mask")
elif sample_type == SPST.FACE_IMAGE:
- img = sample_bgr
-
+ img = sample_bgr
+
if random_rgb_levels:
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed) ) if random_circle_mask else None
img = imagelib.apply_random_rgb_levels(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed) )
@@ -193,15 +196,15 @@ class SampleProcessor(object):
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed+1) ) if random_circle_mask else None
img = imagelib.apply_random_hsv_shift(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed+1) )
-
+
if face_type != sample_face_type:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
else:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
-
- # Apply random color transfer
+
+ # Apply random color transfer
if ct_mode is not None and ct_sample is not None or ct_mode == 'fs-aug':
if ct_mode == 'fs-aug':
img = imagelib.color_augmentation(img)
@@ -210,27 +213,29 @@ class SampleProcessor(object):
ct_sample_bgr = ct_sample.load_bgr()
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), interpolation=cv2.INTER_LINEAR ) )
-
+
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
- img = np.clip(img.astype(np.float32), 0, 1)
-
- if motion_blur is not None:
+ img = np.clip(img.astype(np.float32), 0, 1)
+
+ if motion_blur is not None:
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+2)) if random_circle_mask else None
img = imagelib.apply_random_motion_blur(img, *motion_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+2) )
if gaussian_blur is not None:
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+3)) if random_circle_mask else None
img = imagelib.apply_random_gaussian_blur(img, *gaussian_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+3) )
-
+
if random_bilinear_resize is not None:
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+4)) if random_circle_mask else None
img = imagelib.apply_random_bilinear_resize(img, *random_bilinear_resize, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+4) )
-
-
-
+
+
+
# Transform from BGR to desired channel_type
if channel_type == SPCT.BGR:
out_sample = img
+ elif channel_type == SPCT.LAB_RAND_TRANSFORM:
+ out_sample = random_lab_rotation(img, sample_rnd_seed)
elif channel_type == SPCT.G:
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
elif channel_type == SPCT.GGG:
@@ -239,22 +244,22 @@ class SampleProcessor(object):
# Final transformations
if nearest_resize_to is not None:
out_sample = cv2_resize(out_sample, (nearest_resize_to,nearest_resize_to), interpolation=cv2.INTER_NEAREST)
-
+
if not debug:
if normalize_tanh:
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
if data_format == "NCHW":
out_sample = np.transpose(out_sample, (2,0,1) )
elif sample_type == SPST.IMAGE:
- img = sample_bgr
+ img = sample_bgr
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=True)
img = cv2.resize( img, (resolution, resolution), interpolation=cv2.INTER_CUBIC )
out_sample = img
-
+
if data_format == "NCHW":
out_sample = np.transpose(out_sample, (2,0,1) )
-
-
+
+
elif sample_type == SPST.LANDMARKS_ARRAY:
l = sample_landmarks
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )