diff --git a/core/leras/ops/__init__.py b/core/leras/ops/__init__.py index f34461f..500a22a 100644 --- a/core/leras/ops/__init__.py +++ b/core/leras/ops/__init__.py @@ -307,47 +307,6 @@ def dssim(img1,img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03 nn.dssim = dssim - -# def ms_ssim(img1, img2, resolution, kernel_size=11, k1=0.01, k2=0.03, max_value=1.0, -# power_factors=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333)): -# -# # restrict mssim factors to those greater/equal to kernel size -# power_factors = [power_factors[i] for i in range(len(power_factors)) if resolution//(2**i) >= kernel_size] -# -# # normalize power factors if reduced because of size -# if sum(power_factors) < 1.0: -# power_factors = [x/sum(power_factors) for x in power_factors] -# -# img_dtype = img1.dtype -# if img_dtype != img2.dtype: -# raise ValueError("img1.dtype != img2.dtype") -# -# if img_dtype != tf.float32: -# img1 = tf.cast(img1, tf.float32) -# img2 = tf.cast(img2, tf.float32) -# -# # Transpose images from NCHW to NHWC -# img1_t = tf.transpose(img1, [0, 2, 3, 1]) -# img2_t = tf.transpose(img2, [0, 2, 3, 1]) -# -# def assign_device(op): -# if op.type != 'ListDiff': -# return '/gpu:0' -# else: -# return '/cpu:0' -# -# with tf.device(assign_device): -# ms_ssim_val = tf.image.ssim_multiscale(img1_t, img2_t, max_val=max_value, power_factors=power_factors, -# filter_size=kernel_size, k1=k1, k2=k2) -# ms_ssim_loss = (1.0 - ms_ssim_val) / 2.0 -# -# if img_dtype != tf.float32: -# ms_ssim_loss = tf.cast(ms_ssim_loss, img_dtype) -# return ms_ssim_loss -# -# nn.ms_ssim = ms_ssim - - def space_to_depth(x, size): if nn.data_format == "NHWC": # match NCHW version in order to switch data_format without problems @@ -426,7 +385,7 @@ def total_variation_mse(images): """ pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :] pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :] - + tot_var = ( tf.reduce_sum(tf.square(pixel_dif1), axis=[1,2,3]) + tf.reduce_sum(tf.square(pixel_dif2), axis=[1,2,3]) ) return tot_var @@ -441,4 +400,4 @@ def tf_suppress_lower_mean(t, eps=0.00001): q = tf.clip_by_value(q-t_mean_eps, 0, eps) q = q * (t/eps) return q -""" +""" \ No newline at end of file