mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-30 11:40:36 -07:00
updated pdf manuals for AVATAR model.
Avatar converter: added super resolution option. All converters: super resolution DCSCN network is now replaced by RankSRGAN
This commit is contained in:
parent
19c66286da
commit
c39ed9d9c9
15 changed files with 161 additions and 188 deletions
109
imagelib/RankSRGAN.py
Normal file
109
imagelib/RankSRGAN.py
Normal file
|
@ -0,0 +1,109 @@
|
|||
import numpy as np
|
||||
import cv2
|
||||
from pathlib import Path
|
||||
from nnlib import nnlib
|
||||
from interact import interact as io
|
||||
|
||||
class RankSRGAN():
|
||||
def __init__(self):
|
||||
exec( nnlib.import_all(), locals(), globals() )
|
||||
|
||||
class PixelShufflerTorch(KL.Layer):
|
||||
def __init__(self, size=(2, 2), data_format='channels_last', **kwargs):
|
||||
super(PixelShufflerTorch, self).__init__(**kwargs)
|
||||
self.data_format = data_format
|
||||
self.size = size
|
||||
|
||||
def call(self, inputs):
|
||||
input_shape = K.shape(inputs)
|
||||
if K.int_shape(input_shape)[0] != 4:
|
||||
raise ValueError('Inputs should have rank 4; Received input shape:', str(K.int_shape(inputs)))
|
||||
|
||||
batch_size, h, w, c = input_shape[0], input_shape[1], input_shape[2], K.int_shape(inputs)[-1]
|
||||
rh, rw = self.size
|
||||
oh, ow = h * rh, w * rw
|
||||
oc = c // (rh * rw)
|
||||
|
||||
out = inputs
|
||||
out = K.permute_dimensions(out, (0, 3, 1, 2)) #NCHW
|
||||
|
||||
out = K.reshape(out, (batch_size, oc, rh, rw, h, w))
|
||||
out = K.permute_dimensions(out, (0, 1, 4, 2, 5, 3))
|
||||
out = K.reshape(out, (batch_size, oc, oh, ow))
|
||||
|
||||
out = K.permute_dimensions(out, (0, 2, 3, 1))
|
||||
return out
|
||||
|
||||
def compute_output_shape(self, input_shape):
|
||||
if len(input_shape) != 4:
|
||||
raise ValueError('Inputs should have rank ' + str(4) + '; Received input shape:', str(input_shape))
|
||||
|
||||
height = input_shape[1] * self.size[0] if input_shape[1] is not None else None
|
||||
width = input_shape[2] * self.size[1] if input_shape[2] is not None else None
|
||||
channels = input_shape[3] // self.size[0] // self.size[1]
|
||||
|
||||
if channels * self.size[0] * self.size[1] != input_shape[3]:
|
||||
raise ValueError('channels of input and size are incompatible')
|
||||
|
||||
return (input_shape[0],
|
||||
height,
|
||||
width,
|
||||
channels)
|
||||
|
||||
def get_config(self):
|
||||
config = {'size': self.size,
|
||||
'data_format': self.data_format}
|
||||
base_config = super(PixelShufflerTorch, self).get_config()
|
||||
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
def res_block(inp, name_prefix):
|
||||
x = inp
|
||||
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', activation="relu", name=name_prefix+"0")(x)
|
||||
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', name=name_prefix+"2")(x)
|
||||
return Add()([inp,x])
|
||||
|
||||
ndf = 64
|
||||
nb = 16
|
||||
inp = Input ( (None, None,3) )
|
||||
x = inp
|
||||
|
||||
x = x0 = Conv2D (ndf, kernel_size=3, strides=1, padding='same', name="model0")(x)
|
||||
for i in range(nb):
|
||||
x = res_block(x, "model1%.2d" %i )
|
||||
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', name="model1160")(x)
|
||||
x = Add()([x0,x])
|
||||
|
||||
x = ReLU() ( PixelShufflerTorch() ( Conv2D (ndf*4, kernel_size=3, strides=1, padding='same', name="model2")(x) ) )
|
||||
x = ReLU() ( PixelShufflerTorch() ( Conv2D (ndf*4, kernel_size=3, strides=1, padding='same', name="model5")(x) ) )
|
||||
|
||||
x = Conv2D (ndf, kernel_size=3, strides=1, padding='same', activation="relu", name="model8")(x)
|
||||
x = Conv2D (3, kernel_size=3, strides=1, padding='same', name="model10")(x)
|
||||
self.model = Model(inp, x )
|
||||
self.model.load_weights ( Path(__file__).parent / 'RankSRGAN.h5')
|
||||
|
||||
def upscale(self, img, scale=2, is_bgr=True, is_float=True):
|
||||
if scale not in [2,4]:
|
||||
raise ValueError ("RankSRGAN: supported scale are 2 or 4.")
|
||||
|
||||
if not is_bgr:
|
||||
img = img[...,::-1]
|
||||
|
||||
if not is_float:
|
||||
img /= 255.0
|
||||
|
||||
h, w = img.shape[:2]
|
||||
ch = img.shape[2] if len(img.shape) >= 3 else 1
|
||||
|
||||
output = self.model.predict([img[None,...]])[0]
|
||||
|
||||
if scale == 2:
|
||||
output = cv2.resize (output, (w*scale, h*scale), cv2.INTER_CUBIC)
|
||||
|
||||
if not is_float:
|
||||
output = np.clip (output * 255.0, 0, 255.0)
|
||||
|
||||
if not is_bgr:
|
||||
output = output[...,::-1]
|
||||
|
||||
return output
|
Loading…
Add table
Add a link
Reference in a new issue