This commit is contained in:
iperov 2019-03-18 10:58:03 +04:00
parent da7cf225db
commit bf831331e6

View file

@ -141,66 +141,73 @@ class ExtractSubprocessor(Subprocessor):
if self.debug_dir is not None:
debug_output_file = str( Path(self.debug_dir) / (filename_path.stem+'.jpg') )
debug_image = image.copy()
face_idx = 0
for face in faces:
rect = np.array(face[0])
image_landmarks = face[1]
if image_landmarks is None:
continue
image_landmarks = np.array(image_landmarks)
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
landmarks_bbox = LandmarksProcessor.transform_points ( [ (0,0), (0,self.image_size-1), (self.image_size-1, self.image_size-1), (self.image_size-1,0) ], image_to_face_mat, True)
rect_area = mathlib.polygon_area(np.array(rect[[0,2,2,0]]), np.array(rect[[1,1,3,3]]))
landmarks_area = mathlib.polygon_area(landmarks_bbox[:,0], landmarks_bbox[:,1] )
if landmarks_area > 4*rect_area: #get rid of faces which umeyama-landmark-area > 4*detector-rect-area
continue
if self.debug_dir is not None:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type, transparent_mask=True)
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.jpg')
face_idx += 1
landmarks=face_image_landmarks.tolist()
source_filename = filename_path.name
source_landmarks = image_landmarks.tolist()
source_rect = rect
if src_dflimg is not None:
#if extracting from dflimg copy it in order not to lose quality
output_file = str(self.output_path / filename_path.name)
if str(filename_path) != str(output_file):
shutil.copy ( str(filename_path), str(output_file) )
#and transfer data
source_filename = src_dflimg.get_source_filename()
mat = src_dflimg.get_image_to_face_mat()
if mat is not None:
image_to_face_mat = mat
source_landmarks = LandmarksProcessor.transform_points (landmarks, image_to_face_mat, True)
else:
cv2_imwrite(output_file, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
DFLJPG.embed_data(output_file, face_type=FaceType.toString(self.face_type),
landmarks=landmarks,
source_filename=source_filename,
source_rect=source_rect,
source_landmarks=source_landmarks,
image_to_face_mat=image_to_face_mat
)
if src_dflimg is not None and len(faces) != 1:
#if re-extracting from dflimg and more than 1 or zero faces detected - dont process and just copy it
print("src_dflimg is not None and len(faces) != 1", str(filename_path) )
output_file = str(self.output_path / filename_path.name)
if str(filename_path) != str(output_file):
shutil.copy ( str(filename_path), str(output_file) )
result.append (output_file)
else:
face_idx = 0
for face in faces:
rect = np.array(face[0])
image_landmarks = face[1]
if image_landmarks is None:
continue
image_landmarks = np.array(image_landmarks)
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
landmarks_bbox = LandmarksProcessor.transform_points ( [ (0,0), (0,self.image_size-1), (self.image_size-1, self.image_size-1), (self.image_size-1,0) ], image_to_face_mat, True)
rect_area = mathlib.polygon_area(np.array(rect[[0,2,2,0]]), np.array(rect[[1,1,3,3]]))
landmarks_area = mathlib.polygon_area(landmarks_bbox[:,0], landmarks_bbox[:,1] )
if landmarks_area > 4*rect_area: #get rid of faces which umeyama-landmark-area > 4*detector-rect-area
continue
if self.debug_dir is not None:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type, transparent_mask=True)
landmarks=face_image_landmarks.tolist()
source_filename = filename_path.name
source_landmarks = image_landmarks.tolist()
source_rect = rect
if src_dflimg is not None:
#if extracting from dflimg copy it in order not to lose quality
output_file = str(self.output_path / filename_path.name)
if str(filename_path) != str(output_file):
shutil.copy ( str(filename_path), str(output_file) )
#and transfer data
source_filename = src_dflimg.get_source_filename()
mat = src_dflimg.get_image_to_face_mat()
if mat is not None:
image_to_face_mat = mat
source_landmarks = LandmarksProcessor.transform_points (landmarks, image_to_face_mat, True)
else:
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.jpg')
cv2_imwrite(output_file, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
DFLJPG.embed_data(output_file, face_type=FaceType.toString(self.face_type),
landmarks=landmarks,
source_filename=source_filename,
source_rect=source_rect,
source_landmarks=source_landmarks,
image_to_face_mat=image_to_face_mat
)
result.append (output_file)
face_idx += 1
if self.debug_dir is not None:
cv2_imwrite(debug_output_file, debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )