nothing interesting

This commit is contained in:
Colombo 2019-08-30 09:49:07 +04:00
parent 9f58d160a0
commit bac9d5a99d
2 changed files with 100 additions and 13 deletions

View file

@ -53,10 +53,12 @@ Input = KL.Input
Dense = KL.Dense
Conv2D = nnlib.Conv2D
Conv2DTranspose = nnlib.Conv2DTranspose
EqualConv2D = nnlib.EqualConv2D
SeparableConv2D = KL.SeparableConv2D
MaxPooling2D = KL.MaxPooling2D
UpSampling2D = KL.UpSampling2D
BatchNormalization = KL.BatchNormalization
PixelNormalization = nnlib.PixelNormalization
LeakyReLU = KL.LeakyReLU
ReLU = KL.ReLU
@ -808,7 +810,89 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
x = ReflectionPadding2D( self.pad ) (x)
return self.func(x)
nnlib.Conv2DTranspose = Conv2DTranspose
class EqualConv2D(KL.Conv2D):
def __init__(self, filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
gain=np.sqrt(2),
**kwargs):
super().__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=keras.initializers.RandomNormal(mean=0.0, stddev=1.0),
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs)
self.gain = gain
def build(self, input_shape):
super().build(input_shape)
self.wscale = self.gain / np.sqrt( np.prod( K.int_shape(self.kernel)[:-1]) )
self.wscale_t = K.constant (self.wscale, dtype=K.floatx() )
def call(self, inputs):
k = self.kernel * self.wscale_t
outputs = K.conv2d(
inputs,
k,
strides=self.strides,
padding=self.padding,
data_format=self.data_format,
dilation_rate=self.dilation_rate)
if self.use_bias:
outputs = K.bias_add(
outputs,
self.bias,
data_format=self.data_format)
if self.activation is not None:
return self.activation(outputs)
return outputs
nnlib.EqualConv2D = EqualConv2D
class PixelNormalization(KL.Layer):
# initialize the layer
def __init__(self, **kwargs):
super(PixelNormalization, self).__init__(**kwargs)
# perform the operation
def call(self, inputs):
# calculate square pixel values
values = inputs**2.0
# calculate the mean pixel values
mean_values = K.mean(values, axis=-1, keepdims=True)
# ensure the mean is not zero
mean_values += 1.0e-8
# calculate the sqrt of the mean squared value (L2 norm)
l2 = K.sqrt(mean_values)
# normalize values by the l2 norm
normalized = inputs / l2
return normalized
# define the output shape of the layer
def compute_output_shape(self, input_shape):
return input_shape
nnlib.PixelNormalization = PixelNormalization
@staticmethod
def import_keras_contrib(device_config):
if nnlib.keras_contrib is not None: