mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 22:34:25 -07:00
Merge commit '247215d3a8
' into feat/random-color-change
This commit is contained in:
commit
ba8139bcf4
1 changed files with 6 additions and 5 deletions
|
@ -445,8 +445,9 @@ class SAEModel(ModelBase):
|
||||||
|
|
||||||
if self.options['learn_mask']:
|
if self.options['learn_mask']:
|
||||||
self.AE_view = K.function([warped_src, warped_dst],
|
self.AE_view = K.function([warped_src, warped_dst],
|
||||||
[pred_src_src[-1], pred_dst_dst[-1], pred_dst_dstm[-1], pred_src_dst[-1],
|
[pred_src_src[-1], pred_src_srcm[-1],
|
||||||
pred_src_dstm[-1]])
|
pred_dst_dst[-1], pred_dst_dstm[-1],
|
||||||
|
pred_src_dst[-1], pred_src_dstm[-1]])
|
||||||
else:
|
else:
|
||||||
self.AE_view = K.function([warped_src, warped_dst],
|
self.AE_view = K.function([warped_src, warped_dst],
|
||||||
[pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1]])
|
[pred_src_src[-1], pred_dst_dst[-1], pred_src_dst[-1]])
|
||||||
|
@ -586,9 +587,9 @@ class SAEModel(ModelBase):
|
||||||
test_D_m = sample[1][1+self.ms_count][0:4]
|
test_D_m = sample[1][1+self.ms_count][0:4]
|
||||||
|
|
||||||
if self.options['learn_mask']:
|
if self.options['learn_mask']:
|
||||||
S, D, SS, DD, DDM, SD, SDM = [np.clip(x, 0.0, 1.0) for x in
|
S, D, SS, SSM, DD, DDM, SD, SDM = [np.clip(x, 0.0, 1.0) for x in
|
||||||
([test_S, test_D] + self.AE_view([test_S, test_D]))]
|
([test_S, test_D] + self.AE_view([test_S, test_D]))]
|
||||||
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
|
SSM, DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [SSM, DDM, SDM] ]
|
||||||
else:
|
else:
|
||||||
S, D, SS, DD, SD, = [ np.clip(x, 0.0, 1.0) for x in ([test_S,test_D] + self.AE_view ([test_S, test_D]) ) ]
|
S, D, SS, DD, SD, = [ np.clip(x, 0.0, 1.0) for x in ([test_S,test_D] + self.AE_view ([test_S, test_D]) ) ]
|
||||||
|
|
||||||
|
@ -603,7 +604,7 @@ class SAEModel(ModelBase):
|
||||||
if self.options['learn_mask']:
|
if self.options['learn_mask']:
|
||||||
st_m = []
|
st_m = []
|
||||||
for i in range(0, len(test_S)):
|
for i in range(0, len(test_S)):
|
||||||
ar = S[i]*test_S_m[i], SS[i], D[i]*test_D_m[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
ar = S[i]*test_S_m[i], SS[i]*SSM[i], D[i]*test_D_m[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
||||||
st_m.append ( np.concatenate ( ar, axis=1) )
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
||||||
|
|
||||||
result += [ ('SAE masked', np.concatenate (st_m, axis=0 )), ]
|
result += [ ('SAE masked', np.concatenate (st_m, axis=0 )), ]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue