fix depth_to_space for tf2.4.0. Removing compute_output_shape in leras, because it uses CPU device, which does not support all ops.

This commit is contained in:
iperov 2020-12-11 11:28:33 +04:00
parent bbf3a71a96
commit b9c9e7cffd
5 changed files with 44 additions and 44 deletions

View file

@ -72,11 +72,22 @@ class DeepFakeArchi(nn.ArchiBase):
return x return x
class Encoder(nn.ModelBase): class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch): def __init__(self, in_ch, e_ch, **kwargs ):
self.down1 = DownscaleBlock(in_ch, e_ch, n_downscales=4, kernel_size=5) self.in_ch = in_ch
self.e_ch = e_ch
super().__init__(**kwargs)
def on_build(self):
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5)
def forward(self, inp): def forward(self, inp):
return nn.flatten(self.down1(inp)) return nn.flatten(self.down1(inp))
def get_out_res(self, res):
return res // (2**4)
def get_out_ch(self):
return 512
lowest_dense_res = resolution // (32 if 'd' in opts else 16) lowest_dense_res = resolution // (32 if 'd' in opts else 16)
@ -104,9 +115,8 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.upscale1(x) x = self.upscale1(x)
return x return x
@staticmethod def get_out_res(self):
def get_code_res(): return lowest_dense_res * 2
return lowest_dense_res
def get_out_ch(self): def get_out_ch(self):
return self.ae_out_ch return self.ae_out_ch

View file

@ -116,41 +116,32 @@ class ModelBase(nn.Saveable):
return self.forward(*args, **kwargs) return self.forward(*args, **kwargs)
def compute_output_shape(self, shapes): # def compute_output_shape(self, shapes):
if not self.built: # if not self.built:
self.build() # self.build()
not_list = False # not_list = False
if not isinstance(shapes, list): # if not isinstance(shapes, list):
not_list = True # not_list = True
shapes = [shapes] # shapes = [shapes]
with tf.device('/CPU:0'): # with tf.device('/CPU:0'):
# CPU tensors will not impact any performance, only slightly RAM "leakage" # # CPU tensors will not impact any performance, only slightly RAM "leakage"
phs = [] # phs = []
for dtype,sh in shapes: # for dtype,sh in shapes:
phs += [ tf.placeholder(dtype, sh) ] # phs += [ tf.placeholder(dtype, sh) ]
result = self.__call__(phs[0] if not_list else phs) # result = self.__call__(phs[0] if not_list else phs)
if not isinstance(result, list): # if not isinstance(result, list):
result = [result] # result = [result]
result_shapes = [] # result_shapes = []
for t in result: # for t in result:
result_shapes += [ t.shape.as_list() ] # result_shapes += [ t.shape.as_list() ]
return result_shapes[0] if not_list else result_shapes # return result_shapes[0] if not_list else result_shapes
def compute_output_channels(self, shapes):
shape = self.compute_output_shape(shapes)
shape_len = len(shape)
if shape_len == 4:
if nn.data_format == "NCHW":
return shape[1]
return shape[-1]
def build_for_run(self, shapes_list): def build_for_run(self, shapes_list):
if not isinstance(shapes_list, list): if not isinstance(shapes_list, list):

View file

@ -333,7 +333,7 @@ def depth_to_space(x, size):
x = tf.reshape(x, (-1, oh, ow, oc, )) x = tf.reshape(x, (-1, oh, ow, oc, ))
return x return x
else: else:
return tf.depth_to_space(x, size, data_format=nn.data_format)
b,c,h,w = x.shape.as_list() b,c,h,w = x.shape.as_list()
oh, ow = h * size, w * size oh, ow = h * size, w * size
oc = c // (size * size) oc = c // (size * size)
@ -342,7 +342,7 @@ def depth_to_space(x, size):
x = tf.transpose(x, (0, 3, 4, 1, 5, 2)) x = tf.transpose(x, (0, 3, 4, 1, 5, 2))
x = tf.reshape(x, (-1, oc, oh, ow)) x = tf.reshape(x, (-1, oc, oh, ow))
return x return x
return tf.depth_to_space(x, size, data_format=nn.data_format)
nn.depth_to_space = depth_to_space nn.depth_to_space = depth_to_space

View file

@ -56,10 +56,10 @@ class QModel(ModelBase):
# Initializing model classes # Initializing model classes
with tf.device (models_opt_device): with tf.device (models_opt_device):
self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder') self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder')
encoder_out_ch = self.encoder.compute_output_channels ( (nn.floatx, bgr_shape)) encoder_out_ch = self.encoder.get_out_ch()*self.encoder.get_out_res(resolution)**2
self.inter = model_archi.Inter (in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter') self.inter = model_archi.Inter (in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter')
inter_out_ch = self.inter.compute_output_channels ( (nn.floatx, (None,encoder_out_ch))) inter_out_ch = self.inter.get_out_ch()
self.decoder_src = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_src') self.decoder_src = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_src')
self.decoder_dst = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_dst') self.decoder_dst = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_dst')

View file

@ -233,10 +233,10 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
with tf.device (models_opt_device): with tf.device (models_opt_device):
if 'df' in archi_type: if 'df' in archi_type:
self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder') self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder')
encoder_out_ch = self.encoder.compute_output_channels ( (nn.floatx, bgr_shape)) encoder_out_ch = self.encoder.get_out_ch()*self.encoder.get_out_res(resolution)**2
self.inter = model_archi.Inter (in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter') self.inter = model_archi.Inter (in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter')
inter_out_ch = self.inter.compute_output_channels ( (nn.floatx, (None,encoder_out_ch))) inter_out_ch = self.inter.get_out_ch()
self.decoder_src = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_src') self.decoder_src = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_src')
self.decoder_dst = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_dst') self.decoder_dst = model_archi.Decoder(in_ch=inter_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder_dst')
@ -248,19 +248,18 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if self.is_training: if self.is_training:
if self.options['true_face_power'] != 0: if self.options['true_face_power'] != 0:
self.code_discriminator = nn.CodeDiscriminator(ae_dims, code_res=model_archi.Inter.get_code_res()*2, name='dis' ) self.code_discriminator = nn.CodeDiscriminator(ae_dims, code_res=model_archi.Inter.get_out_res(), name='dis' )
self.model_filename_list += [ [self.code_discriminator, 'code_discriminator.npy'] ] self.model_filename_list += [ [self.code_discriminator, 'code_discriminator.npy'] ]
elif 'liae' in archi_type: elif 'liae' in archi_type:
self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder') self.encoder = model_archi.Encoder(in_ch=input_ch, e_ch=e_dims, name='encoder')
encoder_out_ch = self.encoder.compute_output_channels ( (nn.floatx, bgr_shape)) encoder_out_ch = self.encoder.get_out_ch()*self.encoder.get_out_res(resolution)**2
self.inter_AB = model_archi.Inter(in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims*2, name='inter_AB') self.inter_AB = model_archi.Inter(in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims*2, name='inter_AB')
self.inter_B = model_archi.Inter(in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims*2, name='inter_B') self.inter_B = model_archi.Inter(in_ch=encoder_out_ch, ae_ch=ae_dims, ae_out_ch=ae_dims*2, name='inter_B')
inter_AB_out_ch = self.inter_AB.compute_output_channels ( (nn.floatx, (None,encoder_out_ch))) inter_out_ch = self.inter_AB.get_out_ch()
inter_B_out_ch = self.inter_B.compute_output_channels ( (nn.floatx, (None,encoder_out_ch))) inters_out_ch = inter_out_ch*2
inters_out_ch = inter_AB_out_ch+inter_B_out_ch
self.decoder = model_archi.Decoder(in_ch=inters_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder') self.decoder = model_archi.Decoder(in_ch=inters_out_ch, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder')
self.model_filename_list += [ [self.encoder, 'encoder.npy'], self.model_filename_list += [ [self.encoder, 'encoder.npy'],