mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
enhancing landmarks extractor by using s3fd second pass inside second pass,
it will be x2 slower, but time will be saved due to more images will be marked properly works on 2GB+
This commit is contained in:
parent
1d56585f33
commit
b8efb4cbba
3 changed files with 51 additions and 17 deletions
|
@ -52,7 +52,7 @@ class ExtractSubprocessor(Subprocessor):
|
|||
nnlib.import_all (device_config)
|
||||
self.e = facelib.S3FDExtractor()
|
||||
else:
|
||||
raise ValueError ("Wrond detector type.")
|
||||
raise ValueError ("Wrong detector type.")
|
||||
|
||||
if self.e is not None:
|
||||
self.e.__enter__()
|
||||
|
@ -61,6 +61,11 @@ class ExtractSubprocessor(Subprocessor):
|
|||
nnlib.import_all (device_config)
|
||||
self.e = facelib.LandmarksExtractor(nnlib.keras)
|
||||
self.e.__enter__()
|
||||
if device_config.gpu_vram_gb[0] >= 2:
|
||||
self.second_pass_e = facelib.S3FDExtractor()
|
||||
self.second_pass_e.__enter__()
|
||||
else:
|
||||
self.second_pass_e = None
|
||||
|
||||
elif self.type == 'final':
|
||||
pass
|
||||
|
@ -76,7 +81,7 @@ class ExtractSubprocessor(Subprocessor):
|
|||
|
||||
filename_path_str = str(filename_path)
|
||||
if self.cached_image[0] == filename_path_str:
|
||||
image = self.cached_image[1]
|
||||
image = self.cached_image[1] #cached image for manual extractor
|
||||
else:
|
||||
image = cv2_imread( filename_path_str )
|
||||
|
||||
|
@ -102,8 +107,14 @@ class ExtractSubprocessor(Subprocessor):
|
|||
image = image[0:h-hm,0:w-wm,:]
|
||||
self.cached_image = ( filename_path_str, image )
|
||||
|
||||
src_dflimg = None
|
||||
h, w, ch = image.shape
|
||||
if h == w:
|
||||
#extracting from already extracted jpg image?
|
||||
if filename_path.suffix == '.jpg':
|
||||
src_dflimg = DFLJPG.load ( str(filename_path) )
|
||||
|
||||
if self.type == 'rects':
|
||||
h, w, ch = image.shape
|
||||
if min(w,h) < 128:
|
||||
self.log_err ( 'Image is too small %s : [%d, %d]' % ( str(filename_path), w, h ) )
|
||||
rects = []
|
||||
|
@ -116,18 +127,13 @@ class ExtractSubprocessor(Subprocessor):
|
|||
rects = data[1]
|
||||
if rects is None:
|
||||
landmarks = None
|
||||
else:
|
||||
landmarks = self.e.extract_from_bgr (image, rects)
|
||||
else:
|
||||
landmarks = self.e.extract_from_bgr (image, rects, self.second_pass_e if src_dflimg is None else None)
|
||||
|
||||
return [str(filename_path), landmarks]
|
||||
|
||||
elif self.type == 'final':
|
||||
src_dflimg = None
|
||||
(h,w,c) = image.shape
|
||||
if h == w:
|
||||
#extracting from already extracted jpg image?
|
||||
if filename_path.suffix == '.jpg':
|
||||
src_dflimg = DFLJPG.load ( str(filename_path) )
|
||||
|
||||
|
||||
result = []
|
||||
faces = data[1]
|
||||
|
@ -139,7 +145,10 @@ class ExtractSubprocessor(Subprocessor):
|
|||
face_idx = 0
|
||||
for face in faces:
|
||||
rect = np.array(face[0])
|
||||
image_landmarks = np.array(face[1])
|
||||
image_landmarks = face[1]
|
||||
if image_landmarks is None:
|
||||
continue
|
||||
image_landmarks = np.array(image_landmarks)
|
||||
|
||||
if self.face_type == FaceType.MARK_ONLY:
|
||||
face_image = image
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue