fixed error "Failed to get convolution algorithm" on some systems

fixed error "dll load failed" on some systems
Expanded eyebrows line of face masks. It does not affect mask of FAN-x converter mode.
This commit is contained in:
iperov 2019-08-11 11:17:22 +04:00
parent 582c974851
commit b72d5a3f9a
15 changed files with 367 additions and 222 deletions

View file

@ -89,6 +89,8 @@ dssim = nnlib.dssim
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
BlurPool = nnlib.BlurPool
SelfAttention = nnlib.SelfAttention
CAInitializerMP = nnlib.CAInitializerMP
@ -455,6 +457,51 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.PixelShuffler = PixelShuffler
nnlib.SubpixelUpscaler = PixelShuffler
class BlurPool(KL.Layer):
"""
https://arxiv.org/abs/1904.11486 https://github.com/adobe/antialiased-cnns
"""
def __init__(self, filt_size=3, stride=2, **kwargs):
self.strides = (stride,stride)
self.filt_size = filt_size
self.padding = ( (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ), (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ) )
if(self.filt_size==1):
self.a = np.array([1.,])
elif(self.filt_size==2):
self.a = np.array([1., 1.])
elif(self.filt_size==3):
self.a = np.array([1., 2., 1.])
elif(self.filt_size==4):
self.a = np.array([1., 3., 3., 1.])
elif(self.filt_size==5):
self.a = np.array([1., 4., 6., 4., 1.])
elif(self.filt_size==6):
self.a = np.array([1., 5., 10., 10., 5., 1.])
elif(self.filt_size==7):
self.a = np.array([1., 6., 15., 20., 15., 6., 1.])
super(BlurPool, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
height = input_shape[1] // self.strides[0]
width = input_shape[2] // self.strides[1]
channels = input_shape[3]
return (input_shape[0], height, width, channels)
def call(self, x):
k = self.a
k = k[:,None]*k[None,:]
k = k / np.sum(k)
k = np.tile (k[:,:,None,None], (1,1,K.int_shape(x)[-1],1) )
k = K.constant (k, dtype=K.floatx() )
x = K.spatial_2d_padding(x, padding=self.padding)
x = K.depthwise_conv2d(x, k, strides=self.strides, padding='valid')
return x
nnlib.BlurPool = BlurPool
class Scale(KL.Layer):
"""
@ -487,6 +534,43 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
class SelfAttention(KL.Layer):
def __init__(self, nc, squeeze_factor=8, **kwargs):
assert nc//squeeze_factor > 0, f"Input channels must be >= {squeeze_factor}, recieved nc={nc}"
self.nc = nc
self.squeeze_factor = squeeze_factor
super(SelfAttention, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1], input_shape[2], self.nc)
def call(self, inp):
x = inp
shape_x = x.get_shape().as_list()
f = Conv2D(self.nc//self.squeeze_factor, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
g = Conv2D(self.nc//self.squeeze_factor, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
h = Conv2D(self.nc, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
shape_f = f.get_shape().as_list()
shape_g = g.get_shape().as_list()
shape_h = h.get_shape().as_list()
flat_f = Reshape( (-1, shape_f[-1]) )(f)
flat_g = Reshape( (-1, shape_g[-1]) )(g)
flat_h = Reshape( (-1, shape_h[-1]) )(h)
s = Lambda(lambda x: K.batch_dot(x[0], keras.layers.Permute((2,1))(x[1]) ))([flat_g, flat_f])
beta = keras.layers.Softmax(axis=-1)(s)
o = Lambda(lambda x: K.batch_dot(x[0], x[1]))([beta, flat_h])
o = Reshape(shape_x[1:])(o)
o = Scale()(o)
out = Add()([o, inp])
return out
nnlib.SelfAttention = SelfAttention
class Adam(keras.optimizers.Optimizer):
"""Adam optimizer.