mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-20 05:23:22 -07:00
Merge pull request #145 from faceshiftlabs/feat/image-degradation-random-blur
Feat/image degradation random blur
This commit is contained in:
commit
b725ac164d
2 changed files with 56 additions and 5 deletions
|
@ -57,6 +57,9 @@ class SAEHDModel(ModelBase):
|
||||||
|
|
||||||
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
|
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
|
||||||
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
|
default_random_downsample = self.options['random_downsample'] = self.load_or_def_option('random_downsample', False)
|
||||||
|
default_random_noise = self.options['random_noise'] = self.load_or_def_option('random_noise', False)
|
||||||
|
default_random_blur = self.options['random_blur'] = self.load_or_def_option('random_blur', False)
|
||||||
|
|
||||||
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
default_background_power = self.options['background_power'] = self.load_or_def_option('background_power', 0.0)
|
||||||
default_true_face_power = self.options['true_face_power'] = self.load_or_def_option('true_face_power', 0.0)
|
default_true_face_power = self.options['true_face_power'] = self.load_or_def_option('true_face_power', 0.0)
|
||||||
default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0)
|
default_face_style_power = self.options['face_style_power'] = self.load_or_def_option('face_style_power', 0.0)
|
||||||
|
@ -161,8 +164,8 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
self.options['random_warp'] = io.input_bool ("Enable random warp of samples", default_random_warp, help_message="Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness and reduce subpixel shake for less amount of iterations.")
|
||||||
|
|
||||||
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
self.options['random_downsample'] = io.input_bool("Enable random downsample of samples", default_random_downsample, help_message="")
|
||||||
# self.options['random_noise'] = io.input_bool("Enable random noise added to samples", False, help_message="")
|
self.options['random_noise'] = io.input_bool("Enable random noise added to samples", default_random_noise, help_message="")
|
||||||
# self.options['random_blur'] = io.input_bool("Enable random blur of samples", False, help_message="")
|
self.options['random_blur'] = io.input_bool("Enable random blur of samples", False, help_message="")
|
||||||
# self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", False, help_message="")
|
# self.options['random_jpeg'] = io.input_bool("Enable random jpeg compression of samples", False, help_message="")
|
||||||
|
|
||||||
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
self.options['gan_version'] = np.clip (io.input_int("GAN version", default_gan_version, add_info="2 or 3", help_message="Choose GAN version (v2: 7/16/2020, v3: 1/3/2021):"), 2, 3)
|
||||||
|
@ -751,7 +754,12 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
SampleGeneratorFace(training_data_src_path, random_ct_samples_path=random_ct_samples_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'random_downsample': self.options['random_downsample'], 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
|
||||||
|
'random_downsample': self.options['random_downsample'],
|
||||||
|
'random_noise': self.options['random_noise'],
|
||||||
|
'random_blur': self.options['random_blur'],
|
||||||
|
'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode,
|
||||||
|
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': ct_mode, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
|
@ -761,7 +769,12 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
|
||||||
|
|
||||||
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
||||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
|
||||||
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp, 'random_downsample': self.options['random_downsample'], 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':random_warp,
|
||||||
|
'random_downsample': self.options['random_downsample'],
|
||||||
|
'random_noise': self.options['random_noise'],
|
||||||
|
'random_blur': self.options['random_blur'],
|
||||||
|
'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug,
|
||||||
|
'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':False , 'transform':True, 'channel_type' : channel_type, 'ct_mode': fs_aug, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
|
||||||
|
|
|
@ -7,7 +7,7 @@ import numpy as np
|
||||||
|
|
||||||
from core import imagelib
|
from core import imagelib
|
||||||
from core.cv2ex import *
|
from core.cv2ex import *
|
||||||
from core.imagelib import sd
|
from core.imagelib import sd, LinearMotionBlur
|
||||||
from core.imagelib.color_transfer import random_lab_rotation
|
from core.imagelib.color_transfer import random_lab_rotation
|
||||||
from facelib import FaceType, LandmarksProcessor
|
from facelib import FaceType, LandmarksProcessor
|
||||||
|
|
||||||
|
@ -113,6 +113,8 @@ class SampleProcessor(object):
|
||||||
warp = opts.get('warp', False)
|
warp = opts.get('warp', False)
|
||||||
transform = opts.get('transform', False)
|
transform = opts.get('transform', False)
|
||||||
random_downsample = opts.get('random_downsample', False)
|
random_downsample = opts.get('random_downsample', False)
|
||||||
|
random_noise = opts.get('random_noise', False)
|
||||||
|
random_blur = opts.get('random_blur', False)
|
||||||
motion_blur = opts.get('motion_blur', None)
|
motion_blur = opts.get('motion_blur', None)
|
||||||
gaussian_blur = opts.get('gaussian_blur', None)
|
gaussian_blur = opts.get('gaussian_blur', None)
|
||||||
random_bilinear_resize = opts.get('random_bilinear_resize', None)
|
random_bilinear_resize = opts.get('random_bilinear_resize', None)
|
||||||
|
@ -220,6 +222,42 @@ class SampleProcessor(object):
|
||||||
img = cv2.resize(img, (down_res, down_res), interpolation=cv2.INTER_CUBIC)
|
img = cv2.resize(img, (down_res, down_res), interpolation=cv2.INTER_CUBIC)
|
||||||
img = cv2.resize(img, (resolution, resolution), interpolation=cv2.INTER_CUBIC)
|
img = cv2.resize(img, (resolution, resolution), interpolation=cv2.INTER_CUBIC)
|
||||||
|
|
||||||
|
# Apply random noise
|
||||||
|
if random_noise:
|
||||||
|
noise_type = np.random.choice(['gaussian', 'laplace', 'poisson'])
|
||||||
|
noise_scale = (20 * np.random.random() + 20)
|
||||||
|
|
||||||
|
if noise_type == 'gaussian':
|
||||||
|
noise = np.random.normal(scale=noise_scale, size=img.shape)
|
||||||
|
img += noise / 255.0
|
||||||
|
elif noise_type == 'laplace':
|
||||||
|
noise = np.random.laplace(scale=noise_scale, size=img.shape)
|
||||||
|
img += noise / 255.0
|
||||||
|
elif noise_type == 'poisson':
|
||||||
|
noise_lam = (15 * np.random.random() + 15)
|
||||||
|
noise = np.random.poisson(lam=noise_lam, size=img.shape)
|
||||||
|
img += noise / 255.0
|
||||||
|
|
||||||
|
# Apply random blur
|
||||||
|
if random_blur:
|
||||||
|
blur_type = np.random.choice(['motion', 'gaussian'])
|
||||||
|
|
||||||
|
if blur_type == 'motion':
|
||||||
|
blur_k = np.random.randint(10, 20)
|
||||||
|
blur_angle = 360 * np.random.random()
|
||||||
|
img = LinearMotionBlur(img, blur_k, blur_angle)
|
||||||
|
elif blur_type == 'gaussian':
|
||||||
|
blur_sigma = 5 * np.random.random() + 3
|
||||||
|
|
||||||
|
if blur_sigma < 5.0:
|
||||||
|
kernel_size = 2.9 * blur_sigma # 97% of weight
|
||||||
|
else:
|
||||||
|
kernel_size = 2.6 * blur_sigma # 95% of weight
|
||||||
|
kernel_size = int(kernel_size)
|
||||||
|
kernel_size = kernel_size + 1 if kernel_size % 2 == 0 else kernel_size
|
||||||
|
|
||||||
|
img = cv2.GaussianBlur(img, (kernel_size, kernel_size), blur_sigma)
|
||||||
|
|
||||||
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
|
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
|
||||||
img = np.clip(img.astype(np.float32), 0, 1)
|
img = np.clip(img.astype(np.float32), 0, 1)
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue