mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
optimizations of nnlib and SampleGeneratorFace,
refactorings
This commit is contained in:
parent
2de45083a4
commit
b6c4171ea1
9 changed files with 175 additions and 79 deletions
|
@ -81,11 +81,11 @@ def transform_points(points, mat, invert=False):
|
|||
return points
|
||||
|
||||
|
||||
def get_image_hull_mask (image, image_landmarks):
|
||||
def get_image_hull_mask (image_shape, image_landmarks):
|
||||
if len(image_landmarks) != 68:
|
||||
raise Exception('get_image_hull_mask works only with 68 landmarks')
|
||||
|
||||
hull_mask = np.zeros(image.shape[0:2]+(1,),dtype=np.float32)
|
||||
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
|
||||
|
||||
cv2.fillConvexPoly( hull_mask, cv2.convexHull( np.concatenate ( (image_landmarks[0:17], image_landmarks[48:], [image_landmarks[0]], [image_landmarks[8]], [image_landmarks[16]])) ), (1,) )
|
||||
cv2.fillConvexPoly( hull_mask, cv2.convexHull( np.concatenate ( (image_landmarks[27:31], [image_landmarks[33]]) ) ), (1,) )
|
||||
|
@ -93,19 +93,19 @@ def get_image_hull_mask (image, image_landmarks):
|
|||
|
||||
return hull_mask
|
||||
|
||||
def get_image_eye_mask (image, image_landmarks):
|
||||
def get_image_eye_mask (image_shape, image_landmarks):
|
||||
if len(image_landmarks) != 68:
|
||||
raise Exception('get_image_eye_mask works only with 68 landmarks')
|
||||
|
||||
hull_mask = np.zeros(image.shape[0:2]+(1,),dtype=np.float32)
|
||||
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
|
||||
|
||||
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[36:42]), (1,) )
|
||||
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[42:48]), (1,) )
|
||||
|
||||
return hull_mask
|
||||
|
||||
def get_image_hull_mask_3D (image, image_landmarks):
|
||||
result = get_image_hull_mask(image, image_landmarks)
|
||||
def get_image_hull_mask_3D (image_shape, image_landmarks):
|
||||
result = get_image_hull_mask(image_shape, image_landmarks)
|
||||
|
||||
return np.repeat ( result, (3,), -1 )
|
||||
|
||||
|
@ -128,8 +128,8 @@ def blur_image_hull_mask (hull_mask):
|
|||
|
||||
return hull_mask
|
||||
|
||||
def get_blurred_image_hull_mask(image, image_landmarks):
|
||||
return blur_image_hull_mask ( get_image_hull_mask(image, image_landmarks) )
|
||||
def get_blurred_image_hull_mask(image_shape, image_landmarks):
|
||||
return blur_image_hull_mask ( get_image_hull_mask(image_shape, image_landmarks) )
|
||||
|
||||
mirror_idxs = [
|
||||
[0,16],
|
||||
|
|
|
@ -92,7 +92,7 @@ class BlurEstimatorSubprocessor(SubprocessorBase):
|
|||
if dflpng is not None:
|
||||
image = cv2.imread( str(filename_path) )
|
||||
image = ( image * \
|
||||
LandmarksProcessor.get_image_hull_mask (image, dflpng.get_landmarks()) \
|
||||
LandmarksProcessor.get_image_hull_mask (image.shape, dflpng.get_landmarks()) \
|
||||
).astype(np.uint8)
|
||||
return [ str(filename_path), estimate_sharpness( image ) ]
|
||||
else:
|
||||
|
@ -441,7 +441,7 @@ def sort_by_hist_dissim(input_path):
|
|||
|
||||
dflpng = DFLPNG.load( str(filename_path) )
|
||||
if dflpng is not None:
|
||||
face_mask = LandmarksProcessor.get_image_hull_mask (image, dflpng.get_landmarks())
|
||||
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflpng.get_landmarks())
|
||||
image = (image*face_mask).astype(np.uint8)
|
||||
|
||||
img_list.append ([filename_path, cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])
|
||||
|
@ -524,7 +524,7 @@ class FinalLoaderSubprocessor(SubprocessorBase):
|
|||
raise Exception ("Unable to load %s" % (filepath.name) )
|
||||
|
||||
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
|
||||
gray_masked = ( gray * LandmarksProcessor.get_image_hull_mask (bgr, dflpng.get_landmarks() )[:,:,0] ).astype(np.uint8)
|
||||
gray_masked = ( gray * LandmarksProcessor.get_image_hull_mask (bgr.shape, dflpng.get_landmarks() )[:,:,0] ).astype(np.uint8)
|
||||
sharpness = estimate_sharpness(gray_masked)
|
||||
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
|
||||
except Exception as e:
|
||||
|
|
|
@ -81,7 +81,7 @@ class ConverterMasked(ConverterBase):
|
|||
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks)
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||
|
|
|
@ -337,12 +337,28 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis]
|
||||
|
||||
def func(input):
|
||||
return tf.nn.conv2d(input, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
|
||||
input_nc = input.get_shape().as_list()[-1]
|
||||
inputs = tf.split(input, input_nc, -1)
|
||||
|
||||
outputs = []
|
||||
for i in range(len(inputs)):
|
||||
outputs += [ tf.nn.conv2d( inputs[i] , gauss_kernel, strides=[1, 1, 1, 1], padding="SAME") ]
|
||||
|
||||
return tf.concat (outputs, axis=-1)
|
||||
return func
|
||||
nnlib.tf_gaussian_blur = tf_gaussian_blur
|
||||
|
||||
#any channel count style diff
|
||||
#outputs 0.0 .. 1.0 style difference*loss_weight , 0.0 - no diff
|
||||
def tf_style_loss(gaussian_blur_radius=0.0, loss_weight=1.0, batch_normalize=False, epsilon=1e-5):
|
||||
def sl(content, style):
|
||||
gblur = tf_gaussian_blur(gaussian_blur_radius)
|
||||
|
||||
def sd(content, style):
|
||||
content_nc = content.get_shape().as_list()[-1]
|
||||
style_nc = style.get_shape().as_list()[-1]
|
||||
if content_nc != style_nc:
|
||||
raise Exception("tf_style_loss() content_nc != style_nc")
|
||||
|
||||
axes = [1,2]
|
||||
c_mean, c_var = tf.nn.moments(content, axes=axes, keep_dims=True)
|
||||
s_mean, s_var = tf.nn.moments(style, axes=axes, keep_dims=True)
|
||||
|
@ -360,23 +376,10 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
return (mean_loss + std_loss) * loss_weight
|
||||
|
||||
def func(target, style):
|
||||
target_nc = target.get_shape().as_list()[-1]
|
||||
style_nc = style.get_shape().as_list()[-1]
|
||||
if target_nc != style_nc:
|
||||
raise Exception("target_nc != style_nc")
|
||||
|
||||
targets = tf.split(target, target_nc, -1)
|
||||
styles = tf.split(style, style_nc, -1)
|
||||
|
||||
style_loss = []
|
||||
for i in range(len(targets)):
|
||||
if gaussian_blur_radius > 0.0:
|
||||
style_loss += [ sl( tf_gaussian_blur(gaussian_blur_radius)(targets[i]),
|
||||
tf_gaussian_blur(gaussian_blur_radius)(styles[i])) ]
|
||||
return sd( gblur(target), gblur(style))
|
||||
else:
|
||||
style_loss += [ sl( targets[i],
|
||||
styles[i]) ]
|
||||
return np.sum ( style_loss )
|
||||
return sd( target, style )
|
||||
return func
|
||||
|
||||
nnlib.tf_style_loss = tf_style_loss
|
||||
|
@ -727,8 +730,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
|
||||
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=None, innermost=True)
|
||||
|
||||
#for i in range(num_downs - 5):
|
||||
# unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout)
|
||||
for i in range(num_downs - 5):
|
||||
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout)
|
||||
|
||||
unet_block = UNetSkipConnection(ngf * 4 , ngf * 8, sub_model=unet_block)
|
||||
unet_block = UNetSkipConnection(ngf * 2 , ngf * 4, sub_model=unet_block)
|
||||
|
|
|
@ -9,12 +9,13 @@ class SampleType(IntEnum):
|
|||
FACE = 1 #aligned face unsorted
|
||||
FACE_YAW_SORTED = 2 #sorted by yaw
|
||||
FACE_YAW_SORTED_AS_TARGET = 3 #sorted by yaw and included only yaws which exist in TARGET also automatic mirrored
|
||||
FACE_END = 3
|
||||
FACE_WITH_CLOSE_TO_SELF = 4
|
||||
FACE_END = 4
|
||||
|
||||
QTY = 4
|
||||
QTY = 5
|
||||
|
||||
class Sample(object):
|
||||
def __init__(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None):
|
||||
def __init__(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, close_target_list=None):
|
||||
self.sample_type = sample_type if sample_type is not None else SampleType.IMAGE
|
||||
self.filename = filename
|
||||
self.face_type = face_type
|
||||
|
@ -22,9 +23,9 @@ class Sample(object):
|
|||
self.landmarks = np.array(landmarks) if landmarks is not None else None
|
||||
self.yaw = yaw
|
||||
self.mirror = mirror
|
||||
self.nearest_target_list = nearest_target_list
|
||||
self.close_target_list = close_target_list
|
||||
|
||||
def copy_and_set(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None):
|
||||
def copy_and_set(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, close_target_list=None):
|
||||
return Sample(
|
||||
sample_type=sample_type if sample_type is not None else self.sample_type,
|
||||
filename=filename if filename is not None else self.filename,
|
||||
|
@ -33,7 +34,7 @@ class Sample(object):
|
|||
landmarks=landmarks if landmarks is not None else self.landmarks.copy(),
|
||||
yaw=yaw if yaw is not None else self.yaw,
|
||||
mirror=mirror if mirror is not None else self.mirror,
|
||||
nearest_target_list=nearest_target_list if nearest_target_list is not None else self.nearest_target_list)
|
||||
close_target_list=close_target_list if close_target_list is not None else self.close_target_list)
|
||||
|
||||
def load_bgr(self):
|
||||
img = cv2.imread (self.filename).astype(np.float32) / 255.0
|
||||
|
@ -41,7 +42,7 @@ class Sample(object):
|
|||
img = img[:,::-1].copy()
|
||||
return img
|
||||
|
||||
def get_random_nearest_target_sample(self):
|
||||
if self.nearest_target_list is None:
|
||||
def get_random_close_target_sample(self):
|
||||
if self.close_target_list is None:
|
||||
return None
|
||||
return self.nearest_target_list[randint (0, len(self.nearest_target_list)-1)]
|
||||
return self.close_target_list[randint (0, len(self.close_target_list)-1)]
|
|
@ -11,13 +11,14 @@ from samples import SampleLoader
|
|||
from samples import SampleGeneratorBase
|
||||
|
||||
'''
|
||||
arg
|
||||
output_sample_types = [
|
||||
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
|
||||
...
|
||||
]
|
||||
'''
|
||||
class SampleGeneratorFace(SampleGeneratorBase):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], generators_count=2, **kwargs):
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
|
@ -26,23 +27,19 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
||||
elif sort_by_yaw:
|
||||
self.sample_type = SampleType.FACE_YAW_SORTED
|
||||
elif with_close_to_self:
|
||||
self.sample_type = SampleType.FACE_WITH_CLOSE_TO_SELF
|
||||
else:
|
||||
self.sample_type = SampleType.FACE
|
||||
|
||||
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
||||
|
||||
self.generators_count = min ( generators_count, len(self.samples) )
|
||||
|
||||
if self.debug:
|
||||
self.generator_samples = [ self.samples ]
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
|
||||
else:
|
||||
if len(self.samples) > 1:
|
||||
self.generator_samples = [ self.samples[0::2],
|
||||
self.samples[1::2] ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 ),
|
||||
iter_utils.SubprocessGenerator ( self.batch_func, 1 )]
|
||||
else:
|
||||
self.generator_samples = [ self.samples ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
|
@ -55,7 +52,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
return next(generator)
|
||||
|
||||
def batch_func(self, generator_id):
|
||||
samples = self.generator_samples[generator_id]
|
||||
samples = self.samples[generator_id::self.generators_count]
|
||||
|
||||
data_len = len(samples)
|
||||
if data_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
@ -64,7 +62,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
if all ( [ x == None for x in samples] ):
|
||||
raise ValueError('Not enough training data. Gather more faces!')
|
||||
|
||||
if self.sample_type == SampleType.FACE:
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
shuffle_idxs = []
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
shuffle_idxs = []
|
||||
|
@ -77,7 +75,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
while True:
|
||||
sample = None
|
||||
|
||||
if self.sample_type == SampleType.FACE:
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||
idx = shuffle_idxs.pop()
|
||||
|
|
|
@ -23,9 +23,6 @@ class SampleLoader:
|
|||
if str(samples_path) not in cache.keys():
|
||||
cache[str(samples_path)] = [None]*SampleType.QTY
|
||||
|
||||
if target_samples_path is not None and str(target_samples_path) not in cache.keys():
|
||||
cache[str(target_samples_path)] = [None]*SampleType.QTY
|
||||
|
||||
datas = cache[str(samples_path)]
|
||||
|
||||
if sample_type == SampleType.IMAGE:
|
||||
|
@ -45,6 +42,10 @@ class SampleLoader:
|
|||
if target_samples_path is None:
|
||||
raise Exception('target_samples_path is None for FACE_YAW_SORTED_AS_TARGET')
|
||||
datas[sample_type] = SampleLoader.upgradeToFaceYawSortedAsTargetSamples( SampleLoader.load(SampleType.FACE_YAW_SORTED, samples_path), SampleLoader.load(SampleType.FACE_YAW_SORTED, target_samples_path) )
|
||||
elif sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
if datas[sample_type] is None:
|
||||
datas[sample_type] = SampleLoader.upgradeToFaceCloseToSelfSamples( SampleLoader.load(SampleType.FACE, samples_path) )
|
||||
|
||||
|
||||
return datas[sample_type]
|
||||
|
||||
|
@ -71,6 +72,39 @@ class SampleLoader:
|
|||
|
||||
return sample_list
|
||||
|
||||
@staticmethod
|
||||
def upgradeToFaceCloseToSelfSamples (samples):
|
||||
yaw_samples = SampleLoader.upgradeToFaceYawSortedSamples(samples)
|
||||
yaw_samples_len = len(yaw_samples)
|
||||
|
||||
sample_list = []
|
||||
for i in tqdm( range(yaw_samples_len), desc="Sorting" ):
|
||||
if yaw_samples[i] is not None:
|
||||
for s in yaw_samples[i]:
|
||||
s_t = []
|
||||
|
||||
for n in range(2000):
|
||||
yaw_idx = np.clip ( i-10 +np.random.randint(20), 0, yaw_samples_len-1 )
|
||||
if yaw_samples[yaw_idx] is None:
|
||||
continue
|
||||
|
||||
yaw_idx_samples_len = len(yaw_samples[yaw_idx])
|
||||
|
||||
yaw_idx_sample = yaw_samples[yaw_idx][ np.random.randint(yaw_idx_samples_len) ]
|
||||
if s.filename == yaw_idx_sample.filename:
|
||||
continue
|
||||
|
||||
s_t.append ( yaw_idx_sample )
|
||||
if len(s_t) >= 50:
|
||||
break
|
||||
|
||||
if len(s_t) == 0:
|
||||
s_t = [s]
|
||||
|
||||
sample_list.append( s.copy_and_set(close_target_list = s_t) )
|
||||
|
||||
return sample_list
|
||||
|
||||
@staticmethod
|
||||
def upgradeToFaceYawSortedSamples( samples ):
|
||||
|
||||
|
|
|
@ -14,10 +14,15 @@ class SampleProcessor(object):
|
|||
TRANSFORMED = 0x00000008,
|
||||
LANDMARKS_ARRAY = 0x00000010, #currently unused
|
||||
|
||||
RANDOM_CLOSE = 0x00000020,
|
||||
MORPH_TO_RANDOM_CLOSE \
|
||||
= 0x00000040,
|
||||
|
||||
FACE_ALIGN_HALF = 0x00000100,
|
||||
FACE_ALIGN_FULL = 0x00000200,
|
||||
FACE_ALIGN_HEAD = 0x00000400,
|
||||
FACE_ALIGN_AVATAR = 0x00000800,
|
||||
|
||||
FACE_MASK_FULL = 0x00001000,
|
||||
FACE_MASK_EYES = 0x00002000,
|
||||
|
||||
|
@ -38,17 +43,23 @@ class SampleProcessor(object):
|
|||
|
||||
@staticmethod
|
||||
def process (sample, sample_process_options, output_sample_types, debug):
|
||||
source = sample.load_bgr()
|
||||
h,w,c = source.shape
|
||||
sample_bgr = sample.load_bgr()
|
||||
h,w,c = sample_bgr.shape
|
||||
|
||||
is_face_sample = sample.landmarks is not None
|
||||
|
||||
if debug and is_face_sample:
|
||||
LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0))
|
||||
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
|
||||
|
||||
params = image_utils.gen_warp_params(source, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
||||
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
|
||||
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
|
||||
|
||||
images = [[None]*3 for _ in range(5)]
|
||||
if debug and close_sample_bgr is not None:
|
||||
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
|
||||
|
||||
params = image_utils.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
||||
|
||||
images = [[None]*3 for _ in range(30)]
|
||||
|
||||
sample_rnd_seed = np.random.randint(0x80000000)
|
||||
|
||||
|
@ -71,6 +82,11 @@ class SampleProcessor(object):
|
|||
else:
|
||||
raise ValueError ('expected SampleTypeFlags type')
|
||||
|
||||
if f & SampleProcessor.TypeFlags.RANDOM_CLOSE != 0:
|
||||
img_type += 10
|
||||
elif f & SampleProcessor.TypeFlags.MORPH_TO_RANDOM_CLOSE != 0:
|
||||
img_type += 20
|
||||
|
||||
face_mask_type = 0
|
||||
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
|
||||
face_mask_type = 1
|
||||
|
@ -94,12 +110,52 @@ class SampleProcessor(object):
|
|||
img = l
|
||||
else:
|
||||
if images[img_type][face_mask_type] is None:
|
||||
img = source
|
||||
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
||||
img_type -= 10
|
||||
img = close_sample_bgr
|
||||
cur_sample = close_sample
|
||||
|
||||
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
||||
img_type -= 20
|
||||
res = sample.shape[0]
|
||||
|
||||
s_landmarks = sample.landmarks.copy()
|
||||
d_landmarks = close_sample.landmarks.copy()
|
||||
idxs = list(range(len(s_landmarks)))
|
||||
#remove landmarks near boundaries
|
||||
for i in idxs[:]:
|
||||
s_l = s_landmarks[i]
|
||||
d_l = d_landmarks[i]
|
||||
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
||||
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
||||
idxs.remove(i)
|
||||
#remove landmarks that close to each other in 5 dist
|
||||
for landmarks in [s_landmarks, d_landmarks]:
|
||||
for i in idxs[:]:
|
||||
s_l = landmarks[i]
|
||||
for j in idxs[:]:
|
||||
if i == j:
|
||||
continue
|
||||
s_l_2 = landmarks[j]
|
||||
diff_l = np.abs(s_l - s_l_2)
|
||||
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
||||
idxs.remove(i)
|
||||
break
|
||||
s_landmarks = s_landmarks[idxs]
|
||||
d_landmarks = d_landmarks[idxs]
|
||||
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
||||
img = image_utils.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
||||
cur_sample = close_sample
|
||||
else:
|
||||
img = sample_bgr
|
||||
cur_sample = sample
|
||||
|
||||
if is_face_sample:
|
||||
if face_mask_type == 1:
|
||||
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 )
|
||||
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks) ), -1 )
|
||||
elif face_mask_type == 2:
|
||||
mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks)
|
||||
mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
|
||||
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
||||
mask[mask > 0.0] = 1.0
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
|
@ -111,7 +167,6 @@ class SampleProcessor(object):
|
|||
if is_face_sample and target_face_type != -1:
|
||||
if target_face_type > sample.face_type:
|
||||
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
||||
|
||||
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 )
|
||||
else:
|
||||
img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 )
|
||||
|
|
|
@ -141,6 +141,10 @@ def morphTriangle(dst_img, src_img, st, dt) :
|
|||
imgRect = src_img[sr[1]:sr[1] + sr[3], sr[0]:sr[0] + sr[2]]
|
||||
size = (dr[2], dr[3])
|
||||
warpImage1 = applyAffineTransform(imgRect, sRect, dRect, size)
|
||||
|
||||
if c == 1:
|
||||
warpImage1 = np.expand_dims( warpImage1, -1 )
|
||||
|
||||
dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]] = dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]]*(1-d_mask) + warpImage1 * d_mask
|
||||
|
||||
def morph_by_points (image, sp, dp):
|
||||
|
@ -150,6 +154,7 @@ def morph_by_points (image, sp, dp):
|
|||
|
||||
result_image = np.zeros(image.shape, dtype = image.dtype)
|
||||
|
||||
|
||||
for tri in Delaunay(dp).simplices:
|
||||
morphTriangle(result_image, image, sp[tri], dp[tri])
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue