optimizations of nnlib and SampleGeneratorFace,

refactorings
This commit is contained in:
iperov 2019-01-22 11:52:04 +04:00
parent 2de45083a4
commit b6c4171ea1
9 changed files with 175 additions and 79 deletions

View file

@ -81,11 +81,11 @@ def transform_points(points, mat, invert=False):
return points return points
def get_image_hull_mask (image, image_landmarks): def get_image_hull_mask (image_shape, image_landmarks):
if len(image_landmarks) != 68: if len(image_landmarks) != 68:
raise Exception('get_image_hull_mask works only with 68 landmarks') raise Exception('get_image_hull_mask works only with 68 landmarks')
hull_mask = np.zeros(image.shape[0:2]+(1,),dtype=np.float32) hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
cv2.fillConvexPoly( hull_mask, cv2.convexHull( np.concatenate ( (image_landmarks[0:17], image_landmarks[48:], [image_landmarks[0]], [image_landmarks[8]], [image_landmarks[16]])) ), (1,) ) cv2.fillConvexPoly( hull_mask, cv2.convexHull( np.concatenate ( (image_landmarks[0:17], image_landmarks[48:], [image_landmarks[0]], [image_landmarks[8]], [image_landmarks[16]])) ), (1,) )
cv2.fillConvexPoly( hull_mask, cv2.convexHull( np.concatenate ( (image_landmarks[27:31], [image_landmarks[33]]) ) ), (1,) ) cv2.fillConvexPoly( hull_mask, cv2.convexHull( np.concatenate ( (image_landmarks[27:31], [image_landmarks[33]]) ) ), (1,) )
@ -93,19 +93,19 @@ def get_image_hull_mask (image, image_landmarks):
return hull_mask return hull_mask
def get_image_eye_mask (image, image_landmarks): def get_image_eye_mask (image_shape, image_landmarks):
if len(image_landmarks) != 68: if len(image_landmarks) != 68:
raise Exception('get_image_eye_mask works only with 68 landmarks') raise Exception('get_image_eye_mask works only with 68 landmarks')
hull_mask = np.zeros(image.shape[0:2]+(1,),dtype=np.float32) hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[36:42]), (1,) ) cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[36:42]), (1,) )
cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[42:48]), (1,) ) cv2.fillConvexPoly( hull_mask, cv2.convexHull( image_landmarks[42:48]), (1,) )
return hull_mask return hull_mask
def get_image_hull_mask_3D (image, image_landmarks): def get_image_hull_mask_3D (image_shape, image_landmarks):
result = get_image_hull_mask(image, image_landmarks) result = get_image_hull_mask(image_shape, image_landmarks)
return np.repeat ( result, (3,), -1 ) return np.repeat ( result, (3,), -1 )
@ -128,8 +128,8 @@ def blur_image_hull_mask (hull_mask):
return hull_mask return hull_mask
def get_blurred_image_hull_mask(image, image_landmarks): def get_blurred_image_hull_mask(image_shape, image_landmarks):
return blur_image_hull_mask ( get_image_hull_mask(image, image_landmarks) ) return blur_image_hull_mask ( get_image_hull_mask(image_shape, image_landmarks) )
mirror_idxs = [ mirror_idxs = [
[0,16], [0,16],

View file

@ -92,7 +92,7 @@ class BlurEstimatorSubprocessor(SubprocessorBase):
if dflpng is not None: if dflpng is not None:
image = cv2.imread( str(filename_path) ) image = cv2.imread( str(filename_path) )
image = ( image * \ image = ( image * \
LandmarksProcessor.get_image_hull_mask (image, dflpng.get_landmarks()) \ LandmarksProcessor.get_image_hull_mask (image.shape, dflpng.get_landmarks()) \
).astype(np.uint8) ).astype(np.uint8)
return [ str(filename_path), estimate_sharpness( image ) ] return [ str(filename_path), estimate_sharpness( image ) ]
else: else:
@ -441,7 +441,7 @@ def sort_by_hist_dissim(input_path):
dflpng = DFLPNG.load( str(filename_path) ) dflpng = DFLPNG.load( str(filename_path) )
if dflpng is not None: if dflpng is not None:
face_mask = LandmarksProcessor.get_image_hull_mask (image, dflpng.get_landmarks()) face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflpng.get_landmarks())
image = (image*face_mask).astype(np.uint8) image = (image*face_mask).astype(np.uint8)
img_list.append ([filename_path, cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ]) img_list.append ([filename_path, cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])
@ -524,7 +524,7 @@ class FinalLoaderSubprocessor(SubprocessorBase):
raise Exception ("Unable to load %s" % (filepath.name) ) raise Exception ("Unable to load %s" % (filepath.name) )
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
gray_masked = ( gray * LandmarksProcessor.get_image_hull_mask (bgr, dflpng.get_landmarks() )[:,:,0] ).astype(np.uint8) gray_masked = ( gray * LandmarksProcessor.get_image_hull_mask (bgr.shape, dflpng.get_landmarks() )[:,:,0] ).astype(np.uint8)
sharpness = estimate_sharpness(gray_masked) sharpness = estimate_sharpness(gray_masked)
hist = cv2.calcHist([gray], [0], None, [256], [0, 256]) hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
except Exception as e: except Exception as e:
@ -702,7 +702,7 @@ def sort_by_origname(input_path):
print ("Sorting...") print ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1)) img_list = sorted(img_list, key=operator.itemgetter(1))
return img_list return img_list
def main (input_path, sort_by_method): def main (input_path, sort_by_method):
input_path = Path(input_path) input_path = Path(input_path)
sort_by_method = sort_by_method.lower() sort_by_method = sort_by_method.lower()

View file

@ -81,7 +81,7 @@ class ConverterMasked(ConverterBase):
img_size = img_bgr.shape[1], img_bgr.shape[0] img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr, img_face_landmarks) img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type) face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale) face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.output_size, face_type=self.face_type, scale=self.output_face_scale)

View file

@ -337,12 +337,28 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis] gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis]
def func(input): def func(input):
return tf.nn.conv2d(input, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME") input_nc = input.get_shape().as_list()[-1]
inputs = tf.split(input, input_nc, -1)
outputs = []
for i in range(len(inputs)):
outputs += [ tf.nn.conv2d( inputs[i] , gauss_kernel, strides=[1, 1, 1, 1], padding="SAME") ]
return tf.concat (outputs, axis=-1)
return func return func
nnlib.tf_gaussian_blur = tf_gaussian_blur nnlib.tf_gaussian_blur = tf_gaussian_blur
#any channel count style diff
#outputs 0.0 .. 1.0 style difference*loss_weight , 0.0 - no diff
def tf_style_loss(gaussian_blur_radius=0.0, loss_weight=1.0, batch_normalize=False, epsilon=1e-5): def tf_style_loss(gaussian_blur_radius=0.0, loss_weight=1.0, batch_normalize=False, epsilon=1e-5):
def sl(content, style): gblur = tf_gaussian_blur(gaussian_blur_radius)
def sd(content, style):
content_nc = content.get_shape().as_list()[-1]
style_nc = style.get_shape().as_list()[-1]
if content_nc != style_nc:
raise Exception("tf_style_loss() content_nc != style_nc")
axes = [1,2] axes = [1,2]
c_mean, c_var = tf.nn.moments(content, axes=axes, keep_dims=True) c_mean, c_var = tf.nn.moments(content, axes=axes, keep_dims=True)
s_mean, s_var = tf.nn.moments(style, axes=axes, keep_dims=True) s_mean, s_var = tf.nn.moments(style, axes=axes, keep_dims=True)
@ -360,23 +376,10 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return (mean_loss + std_loss) * loss_weight return (mean_loss + std_loss) * loss_weight
def func(target, style): def func(target, style):
target_nc = target.get_shape().as_list()[-1] if gaussian_blur_radius > 0.0:
style_nc = style.get_shape().as_list()[-1] return sd( gblur(target), gblur(style))
if target_nc != style_nc: else:
raise Exception("target_nc != style_nc") return sd( target, style )
targets = tf.split(target, target_nc, -1)
styles = tf.split(style, style_nc, -1)
style_loss = []
for i in range(len(targets)):
if gaussian_blur_radius > 0.0:
style_loss += [ sl( tf_gaussian_blur(gaussian_blur_radius)(targets[i]),
tf_gaussian_blur(gaussian_blur_radius)(styles[i])) ]
else:
style_loss += [ sl( targets[i],
styles[i]) ]
return np.sum ( style_loss )
return func return func
nnlib.tf_style_loss = tf_style_loss nnlib.tf_style_loss = tf_style_loss
@ -727,8 +730,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=None, innermost=True) unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=None, innermost=True)
#for i in range(num_downs - 5): for i in range(num_downs - 5):
# unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout) unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout)
unet_block = UNetSkipConnection(ngf * 4 , ngf * 8, sub_model=unet_block) unet_block = UNetSkipConnection(ngf * 4 , ngf * 8, sub_model=unet_block)
unet_block = UNetSkipConnection(ngf * 2 , ngf * 4, sub_model=unet_block) unet_block = UNetSkipConnection(ngf * 2 , ngf * 4, sub_model=unet_block)

View file

@ -9,12 +9,13 @@ class SampleType(IntEnum):
FACE = 1 #aligned face unsorted FACE = 1 #aligned face unsorted
FACE_YAW_SORTED = 2 #sorted by yaw FACE_YAW_SORTED = 2 #sorted by yaw
FACE_YAW_SORTED_AS_TARGET = 3 #sorted by yaw and included only yaws which exist in TARGET also automatic mirrored FACE_YAW_SORTED_AS_TARGET = 3 #sorted by yaw and included only yaws which exist in TARGET also automatic mirrored
FACE_END = 3 FACE_WITH_CLOSE_TO_SELF = 4
FACE_END = 4
QTY = 4 QTY = 5
class Sample(object): class Sample(object):
def __init__(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None): def __init__(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, close_target_list=None):
self.sample_type = sample_type if sample_type is not None else SampleType.IMAGE self.sample_type = sample_type if sample_type is not None else SampleType.IMAGE
self.filename = filename self.filename = filename
self.face_type = face_type self.face_type = face_type
@ -22,9 +23,9 @@ class Sample(object):
self.landmarks = np.array(landmarks) if landmarks is not None else None self.landmarks = np.array(landmarks) if landmarks is not None else None
self.yaw = yaw self.yaw = yaw
self.mirror = mirror self.mirror = mirror
self.nearest_target_list = nearest_target_list self.close_target_list = close_target_list
def copy_and_set(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None): def copy_and_set(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, close_target_list=None):
return Sample( return Sample(
sample_type=sample_type if sample_type is not None else self.sample_type, sample_type=sample_type if sample_type is not None else self.sample_type,
filename=filename if filename is not None else self.filename, filename=filename if filename is not None else self.filename,
@ -33,7 +34,7 @@ class Sample(object):
landmarks=landmarks if landmarks is not None else self.landmarks.copy(), landmarks=landmarks if landmarks is not None else self.landmarks.copy(),
yaw=yaw if yaw is not None else self.yaw, yaw=yaw if yaw is not None else self.yaw,
mirror=mirror if mirror is not None else self.mirror, mirror=mirror if mirror is not None else self.mirror,
nearest_target_list=nearest_target_list if nearest_target_list is not None else self.nearest_target_list) close_target_list=close_target_list if close_target_list is not None else self.close_target_list)
def load_bgr(self): def load_bgr(self):
img = cv2.imread (self.filename).astype(np.float32) / 255.0 img = cv2.imread (self.filename).astype(np.float32) / 255.0
@ -41,7 +42,7 @@ class Sample(object):
img = img[:,::-1].copy() img = img[:,::-1].copy()
return img return img
def get_random_nearest_target_sample(self): def get_random_close_target_sample(self):
if self.nearest_target_list is None: if self.close_target_list is None:
return None return None
return self.nearest_target_list[randint (0, len(self.nearest_target_list)-1)] return self.close_target_list[randint (0, len(self.close_target_list)-1)]

View file

@ -11,13 +11,14 @@ from samples import SampleLoader
from samples import SampleGeneratorBase from samples import SampleGeneratorBase
''' '''
arg
output_sample_types = [ output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] , [SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
... ...
] ]
''' '''
class SampleGeneratorFace(SampleGeneratorBase): class SampleGeneratorFace(SampleGeneratorBase):
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs): def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], generators_count=2, **kwargs):
super().__init__(samples_path, debug, batch_size) super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types self.output_sample_types = output_sample_types
@ -26,24 +27,20 @@ class SampleGeneratorFace(SampleGeneratorBase):
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
elif sort_by_yaw: elif sort_by_yaw:
self.sample_type = SampleType.FACE_YAW_SORTED self.sample_type = SampleType.FACE_YAW_SORTED
elif with_close_to_self:
self.sample_type = SampleType.FACE_WITH_CLOSE_TO_SELF
else: else:
self.sample_type = SampleType.FACE self.sample_type = SampleType.FACE
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path) self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
self.generators_count = min ( generators_count, len(self.samples) )
if self.debug: if self.debug:
self.generator_samples = [ self.samples ]
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )] self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
else: else:
if len(self.samples) > 1: self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
self.generator_samples = [ self.samples[0::2],
self.samples[1::2] ]
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 ),
iter_utils.SubprocessGenerator ( self.batch_func, 1 )]
else:
self.generator_samples = [ self.samples ]
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
self.generator_counter = -1 self.generator_counter = -1
def __iter__(self): def __iter__(self):
@ -55,7 +52,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
return next(generator) return next(generator)
def batch_func(self, generator_id): def batch_func(self, generator_id):
samples = self.generator_samples[generator_id] samples = self.samples[generator_id::self.generators_count]
data_len = len(samples) data_len = len(samples)
if data_len == 0: if data_len == 0:
raise ValueError('No training data provided.') raise ValueError('No training data provided.')
@ -64,7 +62,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
if all ( [ x == None for x in samples] ): if all ( [ x == None for x in samples] ):
raise ValueError('Not enough training data. Gather more faces!') raise ValueError('Not enough training data. Gather more faces!')
if self.sample_type == SampleType.FACE: if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
shuffle_idxs = [] shuffle_idxs = []
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
shuffle_idxs = [] shuffle_idxs = []
@ -77,7 +75,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
while True: while True:
sample = None sample = None
if self.sample_type == SampleType.FACE: if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
if len(shuffle_idxs) == 0: if len(shuffle_idxs) == 0:
shuffle_idxs = random.sample( range(data_len), data_len ) shuffle_idxs = random.sample( range(data_len), data_len )
idx = shuffle_idxs.pop() idx = shuffle_idxs.pop()

View file

@ -23,9 +23,6 @@ class SampleLoader:
if str(samples_path) not in cache.keys(): if str(samples_path) not in cache.keys():
cache[str(samples_path)] = [None]*SampleType.QTY cache[str(samples_path)] = [None]*SampleType.QTY
if target_samples_path is not None and str(target_samples_path) not in cache.keys():
cache[str(target_samples_path)] = [None]*SampleType.QTY
datas = cache[str(samples_path)] datas = cache[str(samples_path)]
if sample_type == SampleType.IMAGE: if sample_type == SampleType.IMAGE:
@ -45,7 +42,11 @@ class SampleLoader:
if target_samples_path is None: if target_samples_path is None:
raise Exception('target_samples_path is None for FACE_YAW_SORTED_AS_TARGET') raise Exception('target_samples_path is None for FACE_YAW_SORTED_AS_TARGET')
datas[sample_type] = SampleLoader.upgradeToFaceYawSortedAsTargetSamples( SampleLoader.load(SampleType.FACE_YAW_SORTED, samples_path), SampleLoader.load(SampleType.FACE_YAW_SORTED, target_samples_path) ) datas[sample_type] = SampleLoader.upgradeToFaceYawSortedAsTargetSamples( SampleLoader.load(SampleType.FACE_YAW_SORTED, samples_path), SampleLoader.load(SampleType.FACE_YAW_SORTED, target_samples_path) )
elif sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
if datas[sample_type] is None:
datas[sample_type] = SampleLoader.upgradeToFaceCloseToSelfSamples( SampleLoader.load(SampleType.FACE, samples_path) )
return datas[sample_type] return datas[sample_type]
@staticmethod @staticmethod
@ -69,6 +70,39 @@ class SampleLoader:
landmarks=dflpng.get_landmarks(), landmarks=dflpng.get_landmarks(),
yaw=dflpng.get_yaw_value()) ) yaw=dflpng.get_yaw_value()) )
return sample_list
@staticmethod
def upgradeToFaceCloseToSelfSamples (samples):
yaw_samples = SampleLoader.upgradeToFaceYawSortedSamples(samples)
yaw_samples_len = len(yaw_samples)
sample_list = []
for i in tqdm( range(yaw_samples_len), desc="Sorting" ):
if yaw_samples[i] is not None:
for s in yaw_samples[i]:
s_t = []
for n in range(2000):
yaw_idx = np.clip ( i-10 +np.random.randint(20), 0, yaw_samples_len-1 )
if yaw_samples[yaw_idx] is None:
continue
yaw_idx_samples_len = len(yaw_samples[yaw_idx])
yaw_idx_sample = yaw_samples[yaw_idx][ np.random.randint(yaw_idx_samples_len) ]
if s.filename == yaw_idx_sample.filename:
continue
s_t.append ( yaw_idx_sample )
if len(s_t) >= 50:
break
if len(s_t) == 0:
s_t = [s]
sample_list.append( s.copy_and_set(close_target_list = s_t) )
return sample_list return sample_list
@staticmethod @staticmethod

View file

@ -14,10 +14,15 @@ class SampleProcessor(object):
TRANSFORMED = 0x00000008, TRANSFORMED = 0x00000008,
LANDMARKS_ARRAY = 0x00000010, #currently unused LANDMARKS_ARRAY = 0x00000010, #currently unused
RANDOM_CLOSE = 0x00000020,
MORPH_TO_RANDOM_CLOSE \
= 0x00000040,
FACE_ALIGN_HALF = 0x00000100, FACE_ALIGN_HALF = 0x00000100,
FACE_ALIGN_FULL = 0x00000200, FACE_ALIGN_FULL = 0x00000200,
FACE_ALIGN_HEAD = 0x00000400, FACE_ALIGN_HEAD = 0x00000400,
FACE_ALIGN_AVATAR = 0x00000800, FACE_ALIGN_AVATAR = 0x00000800,
FACE_MASK_FULL = 0x00001000, FACE_MASK_FULL = 0x00001000,
FACE_MASK_EYES = 0x00002000, FACE_MASK_EYES = 0x00002000,
@ -38,18 +43,24 @@ class SampleProcessor(object):
@staticmethod @staticmethod
def process (sample, sample_process_options, output_sample_types, debug): def process (sample, sample_process_options, output_sample_types, debug):
source = sample.load_bgr() sample_bgr = sample.load_bgr()
h,w,c = source.shape h,w,c = sample_bgr.shape
is_face_sample = sample.landmarks is not None is_face_sample = sample.landmarks is not None
if debug and is_face_sample: if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0)) LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
if debug and close_sample_bgr is not None:
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
params = image_utils.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
params = image_utils.gen_warp_params(source, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range ) images = [[None]*3 for _ in range(30)]
images = [[None]*3 for _ in range(5)]
sample_rnd_seed = np.random.randint(0x80000000) sample_rnd_seed = np.random.randint(0x80000000)
outputs = [] outputs = []
@ -71,6 +82,11 @@ class SampleProcessor(object):
else: else:
raise ValueError ('expected SampleTypeFlags type') raise ValueError ('expected SampleTypeFlags type')
if f & SampleProcessor.TypeFlags.RANDOM_CLOSE != 0:
img_type += 10
elif f & SampleProcessor.TypeFlags.MORPH_TO_RANDOM_CLOSE != 0:
img_type += 20
face_mask_type = 0 face_mask_type = 0
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0: if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
face_mask_type = 1 face_mask_type = 1
@ -92,14 +108,54 @@ class SampleProcessor(object):
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 ) l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
l = np.clip(l, 0.0, 1.0) l = np.clip(l, 0.0, 1.0)
img = l img = l
else: else:
if images[img_type][face_mask_type] is None: if images[img_type][face_mask_type] is None:
img = source if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
img_type -= 10
img = close_sample_bgr
cur_sample = close_sample
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
img_type -= 20
res = sample.shape[0]
s_landmarks = sample.landmarks.copy()
d_landmarks = close_sample.landmarks.copy()
idxs = list(range(len(s_landmarks)))
#remove landmarks near boundaries
for i in idxs[:]:
s_l = s_landmarks[i]
d_l = d_landmarks[i]
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
idxs.remove(i)
#remove landmarks that close to each other in 5 dist
for landmarks in [s_landmarks, d_landmarks]:
for i in idxs[:]:
s_l = landmarks[i]
for j in idxs[:]:
if i == j:
continue
s_l_2 = landmarks[j]
diff_l = np.abs(s_l - s_l_2)
if np.sqrt(diff_l.dot(diff_l)) < 5:
idxs.remove(i)
break
s_landmarks = s_landmarks[idxs]
d_landmarks = d_landmarks[idxs]
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
img = image_utils.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
cur_sample = close_sample
else:
img = sample_bgr
cur_sample = sample
if is_face_sample: if is_face_sample:
if face_mask_type == 1: if face_mask_type == 1:
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 ) img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks) ), -1 )
elif face_mask_type == 2: elif face_mask_type == 2:
mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks) mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1) mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
mask[mask > 0.0] = 1.0 mask[mask > 0.0] = 1.0
img = np.concatenate( (img, mask ), -1 ) img = np.concatenate( (img, mask ), -1 )
@ -107,11 +163,10 @@ class SampleProcessor(object):
images[img_type][face_mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0) images[img_type][face_mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0, face_mask_type == 0)
img = images[img_type][face_mask_type] img = images[img_type][face_mask_type]
if is_face_sample and target_face_type != -1: if is_face_sample and target_face_type != -1:
if target_face_type > sample.face_type: if target_face_type > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) ) raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 ) img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 )
else: else:
img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 ) img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 )

View file

@ -140,7 +140,11 @@ def morphTriangle(dst_img, src_img, st, dt) :
cv2.fillConvexPoly(d_mask, np.int32(dRect), (1.0,)*c, 8, 0); cv2.fillConvexPoly(d_mask, np.int32(dRect), (1.0,)*c, 8, 0);
imgRect = src_img[sr[1]:sr[1] + sr[3], sr[0]:sr[0] + sr[2]] imgRect = src_img[sr[1]:sr[1] + sr[3], sr[0]:sr[0] + sr[2]]
size = (dr[2], dr[3]) size = (dr[2], dr[3])
warpImage1 = applyAffineTransform(imgRect, sRect, dRect, size) warpImage1 = applyAffineTransform(imgRect, sRect, dRect, size)
if c == 1:
warpImage1 = np.expand_dims( warpImage1, -1 )
dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]] = dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]]*(1-d_mask) + warpImage1 * d_mask dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]] = dst_img[dr[1]:dr[1]+dr[3], dr[0]:dr[0]+dr[2]]*(1-d_mask) + warpImage1 * d_mask
def morph_by_points (image, sp, dp): def morph_by_points (image, sp, dp):
@ -150,6 +154,7 @@ def morph_by_points (image, sp, dp):
result_image = np.zeros(image.shape, dtype = image.dtype) result_image = np.zeros(image.shape, dtype = image.dtype)
for tri in Delaunay(dp).simplices: for tri in Delaunay(dp).simplices:
morphTriangle(result_image, image, sp[tri], dp[tri]) morphTriangle(result_image, image, sp[tri], dp[tri])