mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
optimizations of nnlib and SampleGeneratorFace,
refactorings
This commit is contained in:
parent
2de45083a4
commit
b6c4171ea1
9 changed files with 175 additions and 79 deletions
|
@ -11,13 +11,14 @@ from samples import SampleLoader
|
|||
from samples import SampleGeneratorBase
|
||||
|
||||
'''
|
||||
arg
|
||||
output_sample_types = [
|
||||
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
|
||||
...
|
||||
]
|
||||
'''
|
||||
class SampleGeneratorFace(SampleGeneratorBase):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], generators_count=2, **kwargs):
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
|
@ -26,24 +27,20 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
||||
elif sort_by_yaw:
|
||||
self.sample_type = SampleType.FACE_YAW_SORTED
|
||||
elif with_close_to_self:
|
||||
self.sample_type = SampleType.FACE_WITH_CLOSE_TO_SELF
|
||||
else:
|
||||
self.sample_type = SampleType.FACE
|
||||
|
||||
self.sample_type = SampleType.FACE
|
||||
|
||||
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
||||
|
||||
self.generators_count = min ( generators_count, len(self.samples) )
|
||||
|
||||
if self.debug:
|
||||
self.generator_samples = [ self.samples ]
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
|
||||
else:
|
||||
if len(self.samples) > 1:
|
||||
self.generator_samples = [ self.samples[0::2],
|
||||
self.samples[1::2] ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 ),
|
||||
iter_utils.SubprocessGenerator ( self.batch_func, 1 )]
|
||||
else:
|
||||
self.generator_samples = [ self.samples ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
|
||||
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, i ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
def __iter__(self):
|
||||
|
@ -55,7 +52,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
return next(generator)
|
||||
|
||||
def batch_func(self, generator_id):
|
||||
samples = self.generator_samples[generator_id]
|
||||
samples = self.samples[generator_id::self.generators_count]
|
||||
|
||||
data_len = len(samples)
|
||||
if data_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
@ -64,7 +62,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
if all ( [ x == None for x in samples] ):
|
||||
raise ValueError('Not enough training data. Gather more faces!')
|
||||
|
||||
if self.sample_type == SampleType.FACE:
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
shuffle_idxs = []
|
||||
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||
shuffle_idxs = []
|
||||
|
@ -77,7 +75,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
while True:
|
||||
sample = None
|
||||
|
||||
if self.sample_type == SampleType.FACE:
|
||||
if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF:
|
||||
if len(shuffle_idxs) == 0:
|
||||
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||
idx = shuffle_idxs.pop()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue