mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 06:23:20 -07:00
Undefined name: import tensorflow as tf
[flake8](http://flake8.pycqa.org) testing of https://github.com/iperov/DeepFaceLab on Python 3.7.1 $ __flake8 . --count --select=E901,E999,F821,F822,F823 --show-source --statistics__ ``` ./samples/Sample.py:47:41: F821 undefined name 'randint' return self.nearest_target_list[randint (0, len(self.nearest_target_list)-1)] ^ ./models/ConverterBase.py:25:16: F821 undefined name 'image' return image ^ ./models/ConverterBase.py:32:16: F821 undefined name 'image' return image ^ ./utils/image_utils.py:282:24: F821 undefined name 'tf_sess' self.tf_sess = tf_sess ^ ./utils/image_utils.py:284:33: F821 undefined name 'tf' self.bgr_input_tensor = tf.placeholder("float", [None, None, 3]) ^ ./utils/image_utils.py:285:33: F821 undefined name 'tf' self.lab_input_tensor = tf.placeholder("float", [None, None, 3]) ^ ./utils/image_utils.py:287:34: F821 undefined name 'tf_rgb_to_lab' self.lab_output_tensor = tf_rgb_to_lab()(self.bgr_input_tensor) ^ ./utils/image_utils.py:288:34: F821 undefined name 'tf_lab_to_rgb' self.bgr_output_tensor = tf_lab_to_rgb()(self.lab_input_tensor) ^ ./nnlib/nnlib.py:509:28: F821 undefined name 'InstanceNormalization' return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:509:77: F821 undefined name 'RandomNormal' return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:513:28: F821 undefined name 'BatchNormalization' return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:513:74: F821 undefined name 'RandomNormal' return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:515:171: F821 undefined name 'RandomNormal' def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None): ^ ./nnlib/nnlib.py:516:24: F821 undefined name 'keras' return keras.layers.convolutional.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint ) ^ ./nnlib/nnlib.py:519:24: F821 undefined name 'keras' return keras.layers.Conv2DTranspose(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, output_padding=output_padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint) ^ ./nnlib/nnlib.py:528:29: F821 undefined name 'ReflectionPadding2D' x = ReflectionPadding2D((1,1))(x) ^ ./nnlib/nnlib.py:531:29: F821 undefined name 'ReLU' x = ReLU()(x) ^ ./nnlib/nnlib.py:534:33: F821 undefined name 'Dropout' x = Dropout(0.5)(x) ^ ./nnlib/nnlib.py:536:29: F821 undefined name 'ReflectionPadding2D' x = ReflectionPadding2D((1,1))(x) ^ ./nnlib/nnlib.py:539:29: F821 undefined name 'ReLU' x = ReLU()(x) ^ ./nnlib/nnlib.py:540:32: F821 undefined name 'Add' return Add()([x,input]) ^ ./nnlib/nnlib.py:545:21: F821 undefined name 'ReflectionPadding2D' x = ReflectionPadding2D((3,3))(x) ^ ./nnlib/nnlib.py:548:21: F821 undefined name 'ReLU' x = ReLU()(XNormalization(Conv2D(ngf*2, 4, 2, 'same')(x))) ^ ./nnlib/nnlib.py:549:21: F821 undefined name 'ReLU' x = ReLU()(XNormalization(Conv2D(ngf*4, 4, 2, 'same')(x))) ^ ./nnlib/nnlib.py:554:21: F821 undefined name 'ReLU' x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf*2 *4, 3, 1, 'same')(x)))) ^ ./nnlib/nnlib.py:554:43: F821 undefined name 'PixelShuffler' x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf*2 *4, 3, 1, 'same')(x)))) ^ ./nnlib/nnlib.py:555:21: F821 undefined name 'ReLU' x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf *4, 3, 1, 'same')(x)))) ^ ./nnlib/nnlib.py:555:43: F821 undefined name 'PixelShuffler' x = ReLU()(XNormalization(PixelShuffler()(Conv2D(ngf *4, 3, 1, 'same')(x)))) ^ ./nnlib/nnlib.py:557:21: F821 undefined name 'ReflectionPadding2D' x = ReflectionPadding2D((3,3))(x) ^ ./nnlib/nnlib.py:559:21: F821 undefined name 'tanh' x = tanh(x) ^ ./nnlib/nnlib.py:577:28: F821 undefined name 'InstanceNormalization' return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:577:77: F821 undefined name 'RandomNormal' return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:581:28: F821 undefined name 'BatchNormalization' return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:581:74: F821 undefined name 'RandomNormal' return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:583:171: F821 undefined name 'RandomNormal' def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None): ^ ./nnlib/nnlib.py:584:24: F821 undefined name 'keras' return keras.layers.convolutional.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint ) ^ ./nnlib/nnlib.py:587:24: F821 undefined name 'keras' return keras.layers.Conv2DTranspose(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, output_padding=output_padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint) ^ ./nnlib/nnlib.py:593:57: F821 undefined name 'ReflectionPadding2D' x = Conv2D(inner_nc, 4, 2, 'valid')(ReflectionPadding2D( (1,1) )(x)) ^ ./nnlib/nnlib.py:595:25: F821 undefined name 'ReLU' x = ReLU()(x) ^ ./nnlib/nnlib.py:603:29: F821 undefined name 'ReLU' x = ReLU()(x) ^ ./nnlib/nnlib.py:607:37: F821 undefined name 'Dropout' x = Dropout(0.5)(x) ^ ./nnlib/nnlib.py:609:29: F821 undefined name 'Concatenate' x = Concatenate(axis=3)([inp, x]) ^ ./nnlib/nnlib.py:612:29: F821 undefined name 'tanh' x = tanh(x) ^ ./nnlib/nnlib.py:641:21: F821 undefined name 'Concatenate' x = Concatenate(axis=3)([ past_2_image_tensor, past_1_image_tensor ]) ^ ./nnlib/nnlib.py:655:28: F821 undefined name 'InstanceNormalization' return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:655:77: F821 undefined name 'RandomNormal' return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)#GroupNormalization (axis=3, groups=K.int_shape (x)[3] // 4, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:659:28: F821 undefined name 'BatchNormalization' return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:659:74: F821 undefined name 'RandomNormal' return BatchNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x) ^ ./nnlib/nnlib.py:661:171: F821 undefined name 'RandomNormal' def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None): ^ ./nnlib/nnlib.py:662:24: F821 undefined name 'keras' return keras.layers.convolutional.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint ) ^ ./nnlib/nnlib.py:667:21: F821 undefined name 'ZeroPadding2D' x = ZeroPadding2D((1,1))(x) ^ ./nnlib/nnlib.py:669:21: F821 undefined name 'LeakyReLU' x = LeakyReLU(0.2)(x) ^ ./nnlib/nnlib.py:672:25: F821 undefined name 'ZeroPadding2D' x = ZeroPadding2D((1,1))(x) ^ ./nnlib/nnlib.py:675:25: F821 undefined name 'LeakyReLU' x = LeakyReLU(0.2)(x) ^ ./nnlib/nnlib.py:677:21: F821 undefined name 'ZeroPadding2D' x = ZeroPadding2D((1,1))(x) ^ ./nnlib/nnlib.py:680:21: F821 undefined name 'LeakyReLU' x = LeakyReLU(0.2)(x) ^ ./nnlib/nnlib.py:682:21: F821 undefined name 'ZeroPadding2D' x = ZeroPadding2D((1,1))(x) ^ 57 F821 undefined name 'image' 57 ``` __E901,E999,F821,F822,F823__ are the "_showstopper_" [flake8](http://flake8.pycqa.org) issues that can halt the runtime with a SyntaxError, NameError, etc. Most other flake8 issues are merely "style violations" -- useful for readability but they do not effect runtime safety. * F821: undefined name `name` * F822: undefined name `name` in `__all__` * F823: local variable name referenced before assignment * E901: SyntaxError or IndentationError * E999: SyntaxError -- failed to compile a file into an Abstract Syntax Tree
This commit is contained in:
parent
46bda1d683
commit
ad2b4144f2
1 changed files with 2 additions and 1 deletions
|
@ -1,6 +1,7 @@
|
||||||
import sys
|
import sys
|
||||||
from utils import random_utils
|
from utils import random_utils
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
import cv2
|
import cv2
|
||||||
import localization
|
import localization
|
||||||
from scipy.spatial import Delaunay
|
from scipy.spatial import Delaunay
|
||||||
|
@ -294,4 +295,4 @@ class TFLabConverter():
|
||||||
def lab2bgr(self, lab):
|
def lab2bgr(self, lab):
|
||||||
return self.tf_sess.run(self.bgr_output_tensor, feed_dict={self.lab_input_tensor: lab})
|
return self.tf_sess.run(self.bgr_output_tensor, feed_dict={self.lab_input_tensor: lab})
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue