added sort by 'final'

This commit is contained in:
iperov 2019-01-07 14:20:44 +04:00
parent 6faabcb94e
commit abdbe7fd8d
3 changed files with 197 additions and 18 deletions

View file

@ -96,19 +96,19 @@ SAE model Cage-Trump video: https://www.youtube.com/watch?v=2R_aqHBClUQ
`black` Places images which contains black area at end of folder. Useful to get rid of src faces which cutted by screen.
Best practice for gather src faceset:
`final` sorts by yaw, blur, and hist, and leaves best 1500-1700 images.
1) delete first unsorted aligned groups of images what you can to delete. Dont touch target face mixed with others.
2) `black` -> delete faces cutted by black area at end of folder
3) `blur` -> delete 30-50% at end of folder
4) `hist` -> delete groups of similar and leave only target face
5) `hist-dissim` -> leave only first **1500 faces**
6) `face-yaw` -> just for finalize faceset
Best practice for gather src faceset from tens of thousands images:
1) `black` -> then delete faces cutted by black area at end of folder
2) `blur` -> then delete blurred faces at end of folder
3) `hist` -> then delete groups of similar unwanted faces and leave only target face
4) `final` -> then delete faces occluded by obstructions
Best practice for dst faces:
1) delete first unsorted aligned groups of images what you can to delete. Dont touch target face mixed with others.
2) `hist` -> delete groups of similar and leave only target face
2) `hist` -> then delete groups of similar and leave only target face
### **Ready to work facesets**:

View file

@ -61,7 +61,7 @@ if __name__ == "__main__":
sort_parser = subparsers.add_parser( "sort", help="Sort faces in a directory.")
sort_parser.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
sort_parser.add_argument('--by', required=True, dest="sort_by_method", choices=("blur", "face", "face-dissim", "face-yaw", "hist", "hist-dissim", "brightness", "hue", "black", "origname"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." )
sort_parser.add_argument('--by', required=True, dest="sort_by_method", choices=("blur", "face", "face-dissim", "face-yaw", "hist", "hist-dissim", "brightness", "hue", "black", "origname", "final"), help="Method of sorting. 'origname' sort by original filename to recover original sequence." )
sort_parser.set_defaults (func=process_sort)
def process_train(arguments):
@ -151,6 +151,7 @@ if __name__ == "__main__":
arguments.func(arguments)
print ("Done.")
'''
import code
code.interact(local=dict(globals(), **locals()))

View file

@ -453,6 +453,163 @@ def sort_by_hist_dissim(input_path):
return img_list
class FinalLoaderSubprocessor(SubprocessorBase):
#override
def __init__(self, img_list ):
self.img_list = img_list
self.result = []
self.result_trash = []
super().__init__('FinalLoader', 60)
#override
def onHostClientsInitialized(self):
pass
#override
def process_info_generator(self):
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i)
}
#override
def get_no_process_started_message(self):
print ( 'Unable to start CPU processes.')
#override
def onHostGetProgressBarDesc(self):
return "Loading"
#override
def onHostGetProgressBarLen(self):
return len (self.img_list)
#override
def onHostGetData(self, host_dict):
if len (self.img_list) > 0:
return [self.img_list.pop(0)]
return None
#override
def onHostDataReturn (self, host_dict, data):
self.img_list.insert(0, data[0])
#override
def onClientInitialize(self, client_dict):
self.safe_print ('Running on %s.' % (client_dict['device_name']) )
return None
#override
def onClientFinalize(self):
pass
#override
def onClientProcessData(self, data):
filepath = Path(data[0])
if filepath.suffix != '.png':
print ("%s is not a png file required for sort_final" % (filepath.name) )
return [ 1, [str(filepath)] ]
dflpng = DFLPNG.load (str(filepath), print_on_no_embedded_data=True)
if dflpng is None:
return [ 1, [str(filepath)] ]
bgr = cv2.imread(str(filepath))
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
gray_masked = ( gray * LandmarksProcessor.get_image_hull_mask (bgr, dflpng.get_landmarks() )[:,:,0] ).astype(np.uint8)
sharpness = estimate_sharpness(gray_masked)
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
return [ 0, [str(filepath), sharpness, hist, dflpng.get_yaw_value() ] ]
#override
def onClientGetDataName (self, data):
#return string identificator of your data
return data[0]
#override
def onHostResult (self, host_dict, data, result):
if result[0] == 0:
self.result.append (result[1])
else:
self.result_trash.append (result[1])
return 1
#override
def onFinalizeAndGetResult(self):
return self.result, self.result_trash
def sort_final(input_path):
print ("Performing final sort.")
img_list, trash_img_list = FinalLoaderSubprocessor( Path_utils.get_image_paths(input_path) ).process()
final_img_list = []
grads = 128
imgs_per_grad = 15
sharpned_imgs_per_grad = imgs_per_grad*10
yaws_sample_list = [None]*grads
for g in tqdm ( range (grads), desc="Sort by yaw" ):
yaw = -grads+1 + g*2
next_yaw = -grads+1 + (g+1)*2
yaw_samples = []
for img in img_list:
s_yaw = -img[3]
if (g == 0 and s_yaw < next_yaw) or \
(g < grads-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
(g == grads-1 and s_yaw >= yaw):
yaw_samples += [ img ]
if len(yaw_samples) > 0:
yaws_sample_list[g] = yaw_samples
for g in tqdm ( range (grads), desc="Sort by blur" ):
img_list = yaws_sample_list[g]
if img_list is None:
continue
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
if len(img_list) > imgs_per_grad*2:
trash_img_list += img_list[len(img_list) // 2:]
img_list = img_list[0: len(img_list) // 2]
if len(img_list) > sharpned_imgs_per_grad:
trash_img_list += img_list[sharpned_imgs_per_grad:]
img_list = img_list[0:sharpned_imgs_per_grad]
yaws_sample_list[g] = img_list
for g in tqdm ( range (grads), desc="Sort by hist" ):
img_list = yaws_sample_list[g]
if img_list is None:
continue
for i in range( len(img_list) ):
score_total = 0
for j in range( len(img_list) ):
if i == j:
continue
score_total += cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA)
img_list[i][3] = score_total
yaws_sample_list[g] = sorted(img_list, key=operator.itemgetter(3), reverse=True)
for g in tqdm ( range (grads), desc="Fetching best" ):
img_list = yaws_sample_list[g]
if img_list is None:
continue
final_img_list += img_list[0:imgs_per_grad]
trash_img_list += img_list[imgs_per_grad:]
return final_img_list, trash_img_list
def sort_by_black(input_path):
print ("Sorting by amount of black pixels...")
@ -466,8 +623,28 @@ def sort_by_black(input_path):
return img_list
def final_rename(input_path, img_list):
for i in tqdm( range(0,len(img_list)), desc="Renaming" , leave=False):
def final_process(input_path, img_list, trash_img_list):
if len(trash_img_list) != 0:
parent_input_path = input_path.parent
trash_path = parent_input_path / (input_path.stem + '_trash')
trash_path.mkdir (exist_ok=True)
print ("Trashing %d items to %s" % ( len(trash_img_list), str(trash_path) ) )
for filename in Path_utils.get_image_paths(trash_path):
Path(filename).unlink()
for i in tqdm( range(len(trash_img_list)), desc="Moving trash" , leave=False):
src = Path (trash_img_list[i][0])
dst = trash_path / src.name
try:
src.rename (dst)
except:
print ('fail to trashing %s' % (src.name) )
print ("")
for i in tqdm( range(len(img_list)), desc="Renaming" , leave=False):
src = Path (img_list[i][0])
dst = input_path / ('%.5d_%s' % (i, src.name ))
try:
@ -475,7 +652,7 @@ def final_rename(input_path, img_list):
except:
print ('fail to rename %s' % (src.name) )
for i in tqdm( range(0,len(img_list)) , desc="Renaming" ):
for i in tqdm( range(len(img_list)) , desc="Renaming" ):
src = Path (img_list[i][0])
src = input_path / ('%.5d_%s' % (i, src.name))
@ -513,7 +690,7 @@ def main (input_path, sort_by_method):
print ("Running sort tool.\r\n")
img_list = []
trash_img_list = []
if sort_by_method == 'blur': img_list = sort_by_blur (input_path)
elif sort_by_method == 'face': img_list = sort_by_face (input_path)
elif sort_by_method == 'face-dissim': img_list = sort_by_face_dissim (input_path)
@ -524,5 +701,6 @@ def main (input_path, sort_by_method):
elif sort_by_method == 'hue': img_list = sort_by_hue (input_path)
elif sort_by_method == 'black': img_list = sort_by_black (input_path)
elif sort_by_method == 'origname': img_list = sort_by_origname (input_path)
elif sort_by_method == 'final': img_list, trash_img_list = sort_final (input_path)
final_rename (input_path, img_list)
final_process (input_path, img_list, trash_img_list)