fix ModelBase, nnlib

This commit is contained in:
iperov 2019-03-13 19:50:16 +04:00
parent 90a7d4b1e7
commit a9026ccb67
2 changed files with 27 additions and 67 deletions

View file

@ -23,8 +23,9 @@ class ModelBase(object):
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, debug = False, device_args = None): def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, debug = False, device_args = None):
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1) device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1)
device_args['cpu_only'] = device_args.get('cpu_only',False)
if device_args['force_gpu_idx'] == -1: if device_args['force_gpu_idx'] == -1 and not device_args['cpu_only']:
idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList() idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1: if len(idxs_names_list) > 1:
io.log_info ("You have multi GPUs in a system: ") io.log_info ("You have multi GPUs in a system: ")
@ -34,10 +35,7 @@ class ModelBase(object):
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] ) device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
self.device_args = device_args self.device_args = device_args
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) ) self.device_config = nnlib.DeviceConfig(allow_growth=False, **self.device_args)
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.K = nnlib.keras.backend
io.log_info ("Loading model...") io.log_info ("Loading model...")
@ -127,8 +125,12 @@ class ModelBase(object):
if self.src_scale_mod == 0: if self.src_scale_mod == 0:
self.options.pop('src_scale_mod') self.options.pop('src_scale_mod')
self.onInitializeOptions(self.iter == 0, ask_override) self.onInitializeOptions(self.iter == 0, ask_override)
nnlib.import_all(self.device_config)
self.keras = nnlib.keras
self.K = nnlib.keras.backend
self.onInitialize() self.onInitialize()
self.options['batch_size'] = self.batch_size self.options['batch_size'] = self.batch_size

View file

@ -148,18 +148,12 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
suppressor.__exit__() suppressor.__exit__()
@staticmethod @staticmethod
def import_keras(device_config = None): def import_keras(device_config):
if nnlib.keras is not None: if nnlib.keras is not None:
return nnlib.code_import_keras return nnlib.code_import_keras
if device_config is None:
device_config = nnlib.active_DeviceConfig
nnlib.active_DeviceConfig = device_config
if "tensorflow" in device_config.backend: if "tensorflow" in device_config.backend:
nnlib._import_tf(device_config) nnlib._import_tf(device_config)
device_config = nnlib.active_DeviceConfig
elif device_config.backend == "plaidML": elif device_config.backend == "plaidML":
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend" os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"
os.environ["PLAIDML_DEVICE_IDS"] = ",".join ( [ nnlib.device.getDeviceID(idx) for idx in device_config.gpu_idxs] ) os.environ["PLAIDML_DEVICE_IDS"] = ",".join ( [ nnlib.device.getDeviceID(idx) for idx in device_config.gpu_idxs] )
@ -435,38 +429,16 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.Scale = Scale nnlib.Scale = Scale
class AdamCPU(keras.optimizers.Optimizer): class AdamCPU(keras.optimizers.Optimizer):
"""Adam optimizer.
Default parameters follow those provided in the original paper.
# Arguments
lr: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
decay: float >= 0. Learning rate decay over each update.
amsgrad: boolean. Whether to apply the AMSGrad variant of this
algorithm from the paper "On the Convergence of Adam and
Beyond".
# References
- [Adam - A Method for Stochastic Optimization](
https://arxiv.org/abs/1412.6980v8)
- [On the Convergence of Adam and Beyond](
https://openreview.net/forum?id=ryQu7f-RZ)
"""
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False, tf_cpu_mode=0, **kwargs): tf_cpu_mode=0, **kwargs):
super(AdamCPU, self).__init__(**kwargs) super(AdamCPU, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__): with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations') self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr') self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2') self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None: self.epsilon = K.epsilon()
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
self.tf_cpu_mode = tf_cpu_mode self.tf_cpu_mode = tf_cpu_mode
@keras.legacy.interfaces.legacy_get_updates_support @keras.legacy.interfaces.legacy_get_updates_support
@ -474,12 +446,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
grads = self.get_gradients(loss, params) grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)] self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1 t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t))) (1. - K.pow(self.beta_1, t)))
@ -488,21 +456,13 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
with K.tf.device("/cpu:0"): with K.tf.device("/cpu:0"):
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1) for _ in params]
else: else:
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1) for _ in params]
self.weights = [self.iterations] + ms + vs + vhats self.weights = [self.iterations] + ms + vs
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): for p, g, m, v in zip(params, grads, ms, vs):
if self.tf_cpu_mode == 2: if self.tf_cpu_mode == 2:
with K.tf.device("/cpu:0"): with K.tf.device("/cpu:0"):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
@ -511,12 +471,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
if self.amsgrad: p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
vhat_t = K.maximum(vhat, v_t)
p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
self.updates.append(K.update(vhat, vhat_t))
else:
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
self.updates.append(K.update(m, m_t)) self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t)) self.updates.append(K.update(v, v_t))
@ -532,10 +487,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
def get_config(self): def get_config(self):
config = {'lr': float(K.get_value(self.lr)), config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)), 'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)), 'beta_2': float(K.get_value(self.beta_2))
'decay': float(K.get_value(self.decay)), }
'epsilon': self.epsilon,
'amsgrad': self.amsgrad}
base_config = super(AdamCPU, self).get_config() base_config = super(AdamCPU, self).get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
@ -561,7 +514,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
@staticmethod @staticmethod
def import_keras_contrib(device_config = None): def import_keras_contrib(device_config):
if nnlib.keras_contrib is not None: if nnlib.keras_contrib is not None:
return nnlib.code_import_keras_contrib return nnlib.code_import_keras_contrib
@ -588,7 +541,12 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
@staticmethod @staticmethod
def import_all(device_config = None): def import_all(device_config = None):
if nnlib.code_import_all is None: if nnlib.code_import_all is None:
if device_config is None:
device_config = nnlib.active_DeviceConfig
else:
nnlib.active_DeviceConfig = device_config
nnlib.import_keras(device_config) nnlib.import_keras(device_config)
nnlib.import_keras_contrib(device_config) nnlib.import_keras_contrib(device_config)
nnlib.code_import_all = compile (nnlib.code_import_keras_string + '\n' nnlib.code_import_all = compile (nnlib.code_import_keras_string + '\n'
@ -600,8 +558,8 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
@staticmethod @staticmethod
def __initialize_all_functions(): def __initialize_all_functions():
exec (nnlib.import_keras(), locals(), globals()) exec (nnlib.import_keras(nnlib.active_DeviceConfig), locals(), globals())
exec (nnlib.import_keras_contrib(), locals(), globals()) exec (nnlib.import_keras_contrib(nnlib.active_DeviceConfig), locals(), globals())
class DSSIMMSEMaskLoss(object): class DSSIMMSEMaskLoss(object):
def __init__(self, mask, is_mse=False): def __init__(self, mask, is_mse=False):