mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
SAE: added test option: 'Apply random color transfer to src faceset'
This commit is contained in:
parent
bde700243c
commit
a805f81142
9 changed files with 152 additions and 129 deletions
|
@ -1,15 +1,18 @@
|
|||
import time
|
||||
import traceback
|
||||
from .Converter import Converter
|
||||
from facelib import LandmarksProcessor
|
||||
from facelib import FaceType
|
||||
from facelib import FANSegmentator
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import imagelib
|
||||
from facelib import FaceType, FANSegmentator, LandmarksProcessor
|
||||
from interact import interact as io
|
||||
from joblib import SubprocessFunctionCaller
|
||||
from utils.pickle_utils import AntiPickler
|
||||
import time
|
||||
|
||||
from .Converter import Converter
|
||||
|
||||
|
||||
'''
|
||||
default_mode = {1:'overlay',
|
||||
2:'hist-match',
|
||||
|
@ -430,4 +433,3 @@ class ConverterMasked(Converter):
|
|||
debugs += [out_img.copy()]
|
||||
|
||||
return debugs if debug else out_img
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ class Model(ModelBase):
|
|||
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=True),
|
||||
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR_SHUFFLE), 'resolution' : self.resolution, 'motion_blur':(25, 1) },
|
||||
{ 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_M, t.FACE_MASK_FULL), 'resolution': self.resolution },
|
||||
{ 'types': (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_M), 'resolution': self.resolution },
|
||||
]),
|
||||
|
||||
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
|
|
|
@ -47,7 +47,7 @@ class Model(ModelBase):
|
|||
t = SampleProcessor.Types
|
||||
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M, t.FACE_MASK_FULL), 'resolution':128} ]
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution':128} ]
|
||||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
|
|
|
@ -57,7 +57,7 @@ class Model(ModelBase):
|
|||
t = SampleProcessor.Types
|
||||
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':128},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':128},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M, t.FACE_MASK_FULL), 'resolution':128} ]
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M), 'resolution':128} ]
|
||||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
|
|
|
@ -58,7 +58,7 @@ class Model(ModelBase):
|
|||
t = SampleProcessor.Types
|
||||
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':64},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_BGR), 'resolution':64},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M, t.FACE_MASK_FULL), 'resolution':64} ]
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_HALF, t.MODE_M), 'resolution':64} ]
|
||||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
|
|
|
@ -52,7 +52,7 @@ class Model(ModelBase):
|
|||
t = SampleProcessor.Types
|
||||
output_sample_types=[ { 'types': (t.IMG_WARPED_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_BGR), 'resolution':128},
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M, t.FACE_MASK_FULL), 'resolution':128} ]
|
||||
{ 'types': (t.IMG_TRANSFORMED, t.FACE_TYPE_FULL, t.MODE_M), 'resolution':128} ]
|
||||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
||||
|
|
|
@ -87,10 +87,15 @@ class SAEModel(ModelBase):
|
|||
default_bg_style_power = default_bg_style_power if is_first_run else self.options.get('bg_style_power', default_bg_style_power)
|
||||
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_bg_style_power), default_bg_style_power,
|
||||
help_message="Learn to transfer image around face. This can make face more like dst. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
|
||||
|
||||
default_apply_random_ct = False if is_first_run else self.options.get('apply_random_ct', False)
|
||||
self.options['apply_random_ct'] = io.input_bool ("Apply random color transfer to src faceset? (y/n, ?:help skip:%s) : " % (yn_str[default_apply_random_ct]), default_apply_random_ct, help_message="Increase variativity of src samples by apply RCT color transfer from random dst samples.")
|
||||
|
||||
else:
|
||||
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
|
||||
self.options['face_style_power'] = self.options.get('face_style_power', default_face_style_power)
|
||||
self.options['bg_style_power'] = self.options.get('bg_style_power', default_bg_style_power)
|
||||
self.options['apply_random_ct'] = self.options.get('apply_random_ct', False)
|
||||
|
||||
if is_first_run:
|
||||
self.options['pretrain'] = io.input_bool ("Pretrain the model? (y/n, ?:help skip:n) : ", False, help_message="Pretrain the model with large amount of various faces. This technique may help to train the fake with overly different face shapes and light conditions of src/dst data. Face will be look more like a morphed. To reduce the morph effect, some model files will be initialized but not be updated after pretrain: LIAE: inter_AB.h5 DF: encoder.h5. The longer you pretrain the model the more morphed face will look. After that, save and run the training again.")
|
||||
|
@ -117,6 +122,7 @@ class SAEModel(ModelBase):
|
|||
|
||||
self.ms_count = ms_count = 3 if (self.options['multiscale_decoder']) else 1
|
||||
|
||||
apply_random_ct = self.options.get('apply_random_ct', False)
|
||||
masked_training = True
|
||||
|
||||
warped_src = Input(bgr_shape)
|
||||
|
@ -133,7 +139,7 @@ class SAEModel(ModelBase):
|
|||
target_dstm_ar = [ Input ( ( mask_shape[0] // (2**i) ,)*2 + (mask_shape[-1],) ) for i in range(ms_count-1, -1, -1)]
|
||||
|
||||
common_flow_kwargs = { 'padding': 'zero',
|
||||
'norm': 'norm',
|
||||
'norm': '',
|
||||
'act':'' }
|
||||
models_list = []
|
||||
weights_to_load = []
|
||||
|
@ -345,10 +351,6 @@ class SAEModel(ModelBase):
|
|||
|
||||
t_mode_bgr = t.MODE_BGR if not self.pretrain else t.MODE_BGR_SHUFFLE
|
||||
|
||||
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution} ]
|
||||
output_sample_types += [ {'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution // (2**i) } for i in range(ms_count)]
|
||||
output_sample_types += [ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M, t.FACE_MASK_FULL), 'resolution': resolution // (2**i) } for i in range(ms_count)]
|
||||
|
||||
training_data_src_path = self.training_data_src_path
|
||||
training_data_dst_path = self.training_data_dst_path
|
||||
sort_by_yaw = self.sort_by_yaw
|
||||
|
@ -360,13 +362,19 @@ class SAEModel(ModelBase):
|
|||
|
||||
self.set_training_data_generators ([
|
||||
SampleGeneratorFace(training_data_src_path, sort_by_yaw_target_samples_path=training_data_dst_path if sort_by_yaw else None,
|
||||
random_ct_samples_path=training_data_dst_path if apply_random_ct else None,
|
||||
debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ),
|
||||
output_sample_types=output_sample_types ),
|
||||
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution, 'apply_ct': apply_random_ct} ] + \
|
||||
[ {'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution // (2**i), 'apply_ct': apply_random_ct } for i in range(ms_count)] + \
|
||||
[ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution // (2**i) } for i in range(ms_count)]
|
||||
),
|
||||
|
||||
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, ),
|
||||
output_sample_types=output_sample_types )
|
||||
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution} ] + \
|
||||
[ {'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution // (2**i)} for i in range(ms_count)] + \
|
||||
[ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution // (2**i) } for i in range(ms_count)])
|
||||
])
|
||||
|
||||
#override
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
import traceback
|
||||
import numpy as np
|
||||
import cv2
|
||||
import multiprocessing
|
||||
from utils import iter_utils
|
||||
from facelib import LandmarksProcessor
|
||||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from facelib import LandmarksProcessor
|
||||
from samplelib import (SampleGeneratorBase, SampleLoader, SampleProcessor,
|
||||
SampleType)
|
||||
from utils import iter_utils
|
||||
|
||||
from samplelib import SampleType, SampleProcessor, SampleLoader, SampleGeneratorBase
|
||||
|
||||
'''
|
||||
arg
|
||||
|
@ -15,7 +18,7 @@ output_sample_types = [
|
|||
]
|
||||
'''
|
||||
class SampleGeneratorFace(SampleGeneratorBase):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, generators_count=2, generators_random_seed=None, **kwargs):
|
||||
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, random_ct_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, generators_count=2, generators_random_seed=None, **kwargs):
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
self.sample_process_options = sample_process_options
|
||||
self.output_sample_types = output_sample_types
|
||||
|
@ -35,12 +38,14 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
|
||||
samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
||||
|
||||
ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path) if random_ct_samples_path is not None else None
|
||||
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples) )]
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples, ct_samples) )]
|
||||
else:
|
||||
self.generators_count = min ( generators_count, len(samples) )
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count] ) ) for i in range(self.generators_count) ]
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count], ct_samples ) ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
|
@ -53,7 +58,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
return next(generator)
|
||||
|
||||
def batch_func(self, param ):
|
||||
generator_id, samples = param
|
||||
generator_id, samples, ct_samples = param
|
||||
|
||||
if self.generators_random_seed is not None:
|
||||
np.random.seed ( self.generators_random_seed[generator_id] )
|
||||
|
@ -61,6 +66,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
samples_len = len(samples)
|
||||
samples_idxs = [*range(samples_len)]
|
||||
|
||||
ct_samples_len = len(ct_samples) if ct_samples is not None else 0
|
||||
|
||||
if len(samples_idxs) == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
|
||||
|
@ -106,7 +113,8 @@ class SampleGeneratorFace(SampleGeneratorBase):
|
|||
|
||||
if sample is not None:
|
||||
try:
|
||||
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
|
||||
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug,
|
||||
ct_sample=ct_samples[np.random.randint(ct_samples_len)] if ct_samples is not None else None )
|
||||
except:
|
||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
||||
|
||||
|
|
|
@ -29,9 +29,6 @@ opts:
|
|||
'FACE_TYPE_HEAD' #currently unused
|
||||
'FACE_TYPE_AVATAR' #currently unused
|
||||
|
||||
'FACE_MASK_FULL'
|
||||
'FACE_MASK_EYES' #currently unused
|
||||
|
||||
'MODE_BGR' #BGR
|
||||
'MODE_G' #Grayscale
|
||||
'MODE_GGG' #3xGrayscale
|
||||
|
@ -42,6 +39,8 @@ opts:
|
|||
|
||||
'motion_blur' : (chance_int, range) - chance 0..100 to apply to face (not mask), and range [1..3] where 3 is highest power of motion blur
|
||||
|
||||
'apply_ct' : bool
|
||||
|
||||
"""
|
||||
|
||||
class SampleProcessor(object):
|
||||
|
@ -65,11 +64,6 @@ class SampleProcessor(object):
|
|||
FACE_TYPE_AVATAR = 13 #currently unused
|
||||
FACE_TYPE_END = 20
|
||||
|
||||
FACE_MASK_BEGIN = 20
|
||||
FACE_MASK_FULL = 20
|
||||
FACE_MASK_EYES = 21 #currently unused
|
||||
FACE_MASK_END = 30
|
||||
|
||||
MODE_BEGIN = 40
|
||||
MODE_BGR = 40 #BGR
|
||||
MODE_G = 41 #Grayscale
|
||||
|
@ -89,10 +83,12 @@ class SampleProcessor(object):
|
|||
self.ty_range = ty_range
|
||||
|
||||
@staticmethod
|
||||
def process (sample, sample_process_options, output_sample_types, debug):
|
||||
def process (sample, sample_process_options, output_sample_types, debug, ct_sample=None):
|
||||
SPTF = SampleProcessor.Types
|
||||
|
||||
sample_bgr = sample.load_bgr()
|
||||
ct_sample_bgr = None
|
||||
ct_sample_mask = None
|
||||
h,w,c = sample_bgr.shape
|
||||
|
||||
is_face_sample = sample.landmarks is not None
|
||||
|
@ -121,6 +117,7 @@ class SampleProcessor(object):
|
|||
normalize_std_dev = opts.get('normalize_std_dev', False)
|
||||
normalize_vgg = opts.get('normalize_vgg', False)
|
||||
motion_blur = opts.get('motion_blur', None)
|
||||
apply_ct = opts.get('apply_ct', False)
|
||||
|
||||
img_type = SPTF.NONE
|
||||
target_face_type = SPTF.NONE
|
||||
|
@ -131,8 +128,6 @@ class SampleProcessor(object):
|
|||
img_type = t
|
||||
elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
|
||||
target_face_type = t
|
||||
elif t >= SPTF.FACE_MASK_BEGIN and t < SPTF.FACE_MASK_END:
|
||||
face_mask_type = t
|
||||
elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
|
||||
mode_type = t
|
||||
|
||||
|
@ -163,10 +158,11 @@ class SampleProcessor(object):
|
|||
if mode_type == SPTF.NONE:
|
||||
raise ValueError ('expected MODE_ type')
|
||||
|
||||
img = cached_images.get(img_type, {}).get(face_mask_type, None)
|
||||
img = cached_images.get(img_type, None)
|
||||
if img is None:
|
||||
|
||||
img = sample_bgr
|
||||
mask = None
|
||||
cur_sample = sample
|
||||
|
||||
if is_face_sample:
|
||||
|
@ -179,7 +175,6 @@ class SampleProcessor(object):
|
|||
dim = mb_range[ np.random.randint(len(mb_range) ) ]
|
||||
img = imagelib.LinearMotionBlur (img, dim, np.random.randint(180) )
|
||||
|
||||
if face_mask_type == SPTF.FACE_MASK_FULL:
|
||||
mask = cur_sample.load_fanseg_mask() #using fanseg_mask if exist
|
||||
|
||||
if mask is None:
|
||||
|
@ -188,19 +183,16 @@ class SampleProcessor(object):
|
|||
if cur_sample.ie_polys is not None:
|
||||
cur_sample.ie_polys.overlay_mask(mask)
|
||||
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
elif face_mask_type == SPTF.FACE_MASK_EYES:
|
||||
mask = LandmarksProcessor.get_image_eye_mask (img.shape, cur_sample.landmarks)
|
||||
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
||||
mask[mask > 0.0] = 1.0
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
|
||||
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
|
||||
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
|
||||
flip = img_type != SPTF.IMG_WARPED
|
||||
is_border_replicate = face_mask_type == SPTF.NONE
|
||||
|
||||
img = cached_images[img_type][face_mask_type] = imagelib.warp_by_params (params, img, warp, transform, flip, is_border_replicate)
|
||||
img = imagelib.warp_by_params (params, img, warp, transform, flip, True)
|
||||
if mask is not None:
|
||||
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)[...,np.newaxis]
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
|
||||
cached_images[img_type] = img
|
||||
|
||||
if is_face_sample and target_face_type != SPTF.NONE:
|
||||
ft = SPTF_FACETYPE_TO_FACETYPE[target_face_type]
|
||||
|
@ -217,9 +209,24 @@ class SampleProcessor(object):
|
|||
start_y = rnd_state.randint(sub_size+1)
|
||||
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
||||
|
||||
img = np.clip(img, 0, 1)
|
||||
img_bgr = img[...,0:3]
|
||||
img_mask = img[...,3:4]
|
||||
|
||||
if apply_ct:
|
||||
if ct_sample_bgr is None:
|
||||
ct_sample_bgr = ct_sample.load_bgr()
|
||||
ct_sample_mask = LandmarksProcessor.get_image_hull_mask (ct_sample_bgr.shape, ct_sample.landmarks)
|
||||
|
||||
ct_sample_bgr_resized = cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR )
|
||||
ct_sample_mask_resized = cv2.resize( ct_sample_mask, (resolution,resolution), cv2.INTER_LINEAR )[...,np.newaxis]
|
||||
|
||||
img_bgr = imagelib.reinhard_color_transfer ( np.clip( (img_bgr*255) .astype(np.uint8), 0, 255),
|
||||
np.clip( (ct_sample_bgr_resized*255).astype(np.uint8), 0, 255),
|
||||
source_mask=img_mask, target_mask=ct_sample_mask_resized)
|
||||
|
||||
img_bgr = np.clip( img_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if normalize_std_dev:
|
||||
img_bgr = (img_bgr - img_bgr.mean( (0,1)) ) / img_bgr.std( (0,1) )
|
||||
elif normalize_vgg:
|
||||
|
@ -239,8 +246,6 @@ class SampleProcessor(object):
|
|||
elif mode_type == SPTF.MODE_GGG:
|
||||
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
||||
elif mode_type == SPTF.MODE_M and is_face_sample:
|
||||
if face_mask_type == SPTF.NONE:
|
||||
raise ValueError ('no face_mask_type defined')
|
||||
img = img_mask
|
||||
|
||||
if not debug:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue