mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-05 20:42:11 -07:00
提供自動合併機制。
This commit is contained in:
parent
335f887ba9
commit
a767b6790b
4 changed files with 98 additions and 37 deletions
23
.vscode/launch.json
vendored
23
.vscode/launch.json
vendored
|
@ -38,7 +38,8 @@
|
|||
"--training-data-src-dir", "D:\\DeepFaceLab\\workspace\\data_src\\aligned",
|
||||
"--training-data-dst-dir", "D:\\DeepFaceLab\\workspace\\data_dst\\aligned",
|
||||
"--model-dir", "D:\\DeepFaceLab\\workspace\\model",
|
||||
"--model", "SAEHD"
|
||||
"--model", "SAEHD",
|
||||
"--silent-start"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -63,6 +64,26 @@
|
|||
"--force-gpu-idxs", "0"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "DFL mp4",
|
||||
"subProcess": true,
|
||||
"justMyCode": true,
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "D:\\DeepFaceLab\\_internal\\DeepFaceLab\\main.py",
|
||||
"python": "D:\\DeepFaceLab\\_internal\\python-3.6.8\\python.exe",
|
||||
"cwd": "D:\\DeepFaceLab\\workspace",
|
||||
"console": "integratedTerminal",
|
||||
"gevent": true,
|
||||
"args": ["videoed",
|
||||
"video-from-sequence",
|
||||
"--input-dir", "data_dst\\merged",
|
||||
"--output-file", "result.mp4",
|
||||
"--reference-file", "data_dst.*",
|
||||
"--bitrate", "16",
|
||||
"--include-audio"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "Auto DFL",
|
||||
"subProcess": true,
|
||||
|
|
|
@ -2,9 +2,10 @@ import ymauto.MergeDefault as MD
|
|||
|
||||
md = MD.MergeArgs("config.json")
|
||||
|
||||
print(md.g("sandy", "name"))
|
||||
print(md.g("beauty", "deep", "gender"))
|
||||
print(md.gOrder("mask_mode", "mask_mode_opts"))
|
||||
# print(md.g("sandy", "name"))
|
||||
# print(md.g("beauty", "deep", "gender"))
|
||||
# print(md.g("version1"))
|
||||
# print(md.g("deep", "method"))
|
||||
# print(md.g("deep", "methoda", "PP"))
|
||||
# print([v + '真神' for v in md.g("array")])
|
||||
# print([v + '真神' for v in md.g("array")])
|
|
@ -71,19 +71,19 @@ def main (model_class_name=None,
|
|||
place_model_on_cpu=True,
|
||||
run_on_cpu=run_on_cpu)
|
||||
|
||||
if md.g(None, "interactive") is None:
|
||||
if md.g("interactive") is None:
|
||||
is_interactive = io.input_bool ("Use interactive merger?", True) if not io.is_colab() else False
|
||||
else:
|
||||
is_interactive = md.g(None, "interactive")
|
||||
is_interactive = md.g("interactive")
|
||||
|
||||
if not is_interactive:
|
||||
cfg.ask_settings()
|
||||
|
||||
if md.g(None, "subprocess_count") is None:
|
||||
if md.gd("NoSet", "subprocess_count") == "NoSet":
|
||||
subprocess_count = io.input_int("Number of workers?", max(8, multiprocessing.cpu_count()),
|
||||
valid_range=[1, multiprocessing.cpu_count()], help_message="Specify the number of threads to process. A low value may affect performance. A high value may result in memory error. The value may not be greater than CPU cores." )
|
||||
else:
|
||||
subprocess_count = md.g(4, "subprocess_count")
|
||||
subprocess_count = md.gd(4, "subprocess_count")
|
||||
|
||||
input_path_image_paths = pathex.get_image_paths(input_path)
|
||||
|
||||
|
|
|
@ -33,12 +33,15 @@ class MergerConfig(object):
|
|||
return copy.copy(self)
|
||||
|
||||
#overridable
|
||||
def ask_settings(self):
|
||||
s = """Choose sharpen mode: \n"""
|
||||
for key in self.sharpen_dict.keys():
|
||||
s += f"""({key}) {self.sharpen_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
self.sharpen_mode = io.input_int ("", 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
|
||||
def ask_settings(self):
|
||||
if md.g("sharpen_mode") is None:
|
||||
s = """Choose sharpen mode: \n"""
|
||||
for key in self.sharpen_dict.keys():
|
||||
s += f"""({key}) {self.sharpen_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
self.sharpen_mode = io.input_int ("", 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
|
||||
else:
|
||||
self.sharpen_mode = md.gOrder("sharpen_mode", "sharpen_mode_opts")
|
||||
|
||||
if self.sharpen_mode != 0:
|
||||
self.blursharpen_amount = np.clip ( io.input_int ("Choose blur/sharpen amount", 0, add_info="-100..100"), -100, 100 )
|
||||
|
@ -191,15 +194,17 @@ class MergerConfigMasked(MergerConfig):
|
|||
self.bicubic_degrade_power = np.clip ( self.bicubic_degrade_power+diff, 0, 100)
|
||||
|
||||
def ask_settings(self):
|
||||
print("mode: " + md.g('mode'))
|
||||
|
||||
s = """Choose mode: \n"""
|
||||
for key in mode_dict.keys():
|
||||
s += f"""({key}) {mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
mode = io.input_int ("", mode_str_dict.get(self.default_mode, 1) )
|
||||
|
||||
self.mode = mode_dict.get (mode, self.default_mode )
|
||||
|
||||
if md.g("mode") is None:
|
||||
s = """Choose mode: \n"""
|
||||
for key in mode_dict.keys():
|
||||
s += f"""({key}) {mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
mode = io.input_int ("", mode_str_dict.get(self.default_mode, 1) )
|
||||
|
||||
self.mode = mode_dict.get (mode, self.default_mode )
|
||||
else:
|
||||
self.mode = md.g("mode")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
if self.mode == 'hist-match':
|
||||
|
@ -208,31 +213,65 @@ class MergerConfigMasked(MergerConfig):
|
|||
if self.mode == 'hist-match' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold", 255, add_info="0..255"), 0, 255)
|
||||
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in mask_mode_dict.keys():
|
||||
s += f"""({key}) {mask_mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
self.mask_mode = io.input_int ("", 1, valid_list=mask_mode_dict.keys() )
|
||||
if md.g("mask_mode") is None:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in mask_mode_dict.keys():
|
||||
s += f"""({key}) {mask_mode_dict[key]}\n"""
|
||||
io.log_info(s)
|
||||
self.mask_mode = io.input_int ("", 1, valid_list=mask_mode_dict.keys() )
|
||||
else:
|
||||
self.mask_mode = md.gOrder("mask_mode", "mask_mode_opts")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
|
||||
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier", 0, add_info="0..400"), 0, 400)
|
||||
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power", 0, add_info="0..100"), 0, 100)
|
||||
if md.g("erode_mask_modifier") is None:
|
||||
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier", 0, add_info="-400..400"), -400, 400)
|
||||
else:
|
||||
self.erode_mask_modifier = md.g("erode_mask_modifier")
|
||||
|
||||
if md.g("blur_mask_modifier") is None:
|
||||
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier", 0, add_info="0..400"), 0, 400)
|
||||
else:
|
||||
self.erode_mask_modifier = md.g("blur_mask_modifier")
|
||||
|
||||
if md.g("motion_blur_power") is None:
|
||||
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power", 0, add_info="0..100"), 0, 100)
|
||||
else:
|
||||
self.erode_mask_modifier = md.g("motion_blur_power")
|
||||
|
||||
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier", 0, add_info="-50..50" ), -50, 50)
|
||||
if md.g("output_face_scale") is None:
|
||||
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier", 0, add_info="-50..50" ), -50, 50)
|
||||
else:
|
||||
self.output_face_scale = md.g("output_face_scale")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.color_transfer_mode = io.input_str ( "Color transfer to predicted face", None, valid_list=list(ctm_str_dict.keys())[1:] )
|
||||
if md.g("color_transfer_mode") is None:
|
||||
self.color_transfer_mode = io.input_str ( "Color transfer to predicted face", None, valid_list=list(ctm_str_dict.keys())[1:] )
|
||||
else:
|
||||
self.color_transfer_mode = md.g("color_transfer_mode")
|
||||
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
|
||||
|
||||
super().ask_settings()
|
||||
|
||||
self.super_resolution_power = np.clip ( io.input_int ("Choose super resolution power", 0, add_info="0..100", help_message="Enhance details by applying superresolution network."), 0, 100)
|
||||
if md.g("super_resolution_power") is None:
|
||||
self.super_resolution_power = np.clip ( io.input_int ("Choose super resolution power", 0, add_info="0..100", help_message="Enhance details by applying superresolution network."), 0, 100)
|
||||
else:
|
||||
self.super_resolution_power = md.g("super_resolution_power")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.image_denoise_power = np.clip ( io.input_int ("Choose image degrade by denoise power", 0, add_info="0..500"), 0, 500)
|
||||
self.bicubic_degrade_power = np.clip ( io.input_int ("Choose image degrade by bicubic rescale power", 0, add_info="0..100"), 0, 100)
|
||||
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image", 0, add_info="0..100"), 0, 100)
|
||||
if md.g("image_denoise_power") is None:
|
||||
self.image_denoise_power = np.clip ( io.input_int ("Choose image degrade by denoise power", 0, add_info="0..500"), 0, 500)
|
||||
else:
|
||||
self.image_denoise_power = md.g("image_denoise_power")
|
||||
|
||||
if md.g("bicubic_degrade_power") is None:
|
||||
self.bicubic_degrade_power = np.clip ( io.input_int ("Choose image degrade by bicubic rescale power", 0, add_info="0..100"), 0, 100)
|
||||
else:
|
||||
self.bicubic_degrade_power = md.g("bicubic_degrade_power")
|
||||
|
||||
if md.g("color_degrade_power") is None:
|
||||
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image", 0, add_info="0..100"), 0, 100)
|
||||
else:
|
||||
self.color_degrade_power = md.g("color_degrade_power")
|
||||
|
||||
io.log_info ("")
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue