mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
loss history with epoch now saves to preview history images
This commit is contained in:
parent
9545774c59
commit
a65b557b0e
2 changed files with 71 additions and 66 deletions
|
@ -1,8 +1,8 @@
|
|||
import os
|
||||
import time
|
||||
import inspect
|
||||
import operator
|
||||
import pickle
|
||||
import colorsys
|
||||
from pathlib import Path
|
||||
from utils import Path_utils
|
||||
from utils import std_utils
|
||||
|
@ -320,8 +320,10 @@ class ModelBase(object):
|
|||
self.supress_std_once = False
|
||||
|
||||
if self.write_preview_history:
|
||||
if self.epoch % 10 == 0:
|
||||
img = (self.get_static_preview() * 255).astype(np.uint8)
|
||||
if self.epoch % 10 == 0:
|
||||
preview = self.get_static_preview()
|
||||
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.epoch, preview.shape[1], preview.shape[2])
|
||||
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
|
||||
cv2_imwrite ( str (self.preview_history_path / ('%.6d.jpg' %( self.epoch) )), img )
|
||||
|
||||
self.epoch += 1
|
||||
|
@ -387,4 +389,63 @@ class ModelBase(object):
|
|||
break
|
||||
|
||||
if self.batch_size == 0:
|
||||
self.batch_size = d[ keys[-1] ]
|
||||
self.batch_size = d[ keys[-1] ]
|
||||
|
||||
@staticmethod
|
||||
def get_loss_history_preview(loss_history, epoch, w, c):
|
||||
loss_history = np.array (loss_history.copy())
|
||||
|
||||
lh_height = 100
|
||||
lh_img = np.ones ( (lh_height,w,c) ) * 0.1
|
||||
loss_count = len(loss_history[0])
|
||||
lh_len = len(loss_history)
|
||||
|
||||
l_per_col = lh_len / w
|
||||
plist_max = [ [ max (0.0, loss_history[int(col*l_per_col)][p],
|
||||
*[ loss_history[i_ab][p]
|
||||
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
|
||||
]
|
||||
)
|
||||
for p in range(loss_count)
|
||||
]
|
||||
for col in range(w)
|
||||
]
|
||||
|
||||
plist_min = [ [ min (plist_max[col][p], loss_history[int(col*l_per_col)][p],
|
||||
*[ loss_history[i_ab][p]
|
||||
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
|
||||
]
|
||||
)
|
||||
for p in range(loss_count)
|
||||
]
|
||||
for col in range(w)
|
||||
]
|
||||
|
||||
plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2
|
||||
|
||||
for col in range(0, w):
|
||||
for p in range(0,loss_count):
|
||||
point_color = [1.0]*c
|
||||
point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 )
|
||||
|
||||
ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) )
|
||||
ph_max = np.clip( ph_max, 0, lh_height-1 )
|
||||
|
||||
ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) )
|
||||
ph_min = np.clip( ph_min, 0, lh_height-1 )
|
||||
|
||||
for ph in range(ph_min, ph_max+1):
|
||||
lh_img[ (lh_height-ph-1), col ] = point_color
|
||||
|
||||
lh_lines = 5
|
||||
lh_line_height = (lh_height-1)/lh_lines
|
||||
for i in range(0,lh_lines+1):
|
||||
lh_img[ int(i*lh_line_height), : ] = (0.8,)*c
|
||||
|
||||
last_line_t = int((lh_lines-1)*lh_line_height)
|
||||
last_line_b = int(lh_lines*lh_line_height)
|
||||
|
||||
lh_text = 'Epoch: %d' % (epoch) if epoch != 0 else ''
|
||||
|
||||
lh_img[last_line_t:last_line_b, 0:w] += image_utils.get_text_image ( (w,last_line_b-last_line_t,c), lh_text, color=[0.8]*c )
|
||||
return lh_img
|
Loading…
Add table
Add a link
Reference in a new issue