removing trailing spaces

This commit is contained in:
iperov 2019-03-19 23:53:27 +04:00
parent fa4e579b95
commit a3df04999c
61 changed files with 2110 additions and 2103 deletions

View file

@ -18,9 +18,9 @@ from facelib import LandmarksProcessor
from nnlib import nnlib
from joblib import Subprocessor
from interact import interact as io
class ExtractSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
@ -32,19 +32,19 @@ class ExtractSubprocessor(Subprocessor):
self.face_type = client_dict['face_type']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.debug_dir = client_dict['debug_dir']
self.detector = client_dict['detector']
self.cached_image = (None, None)
self.e = None
device_config = nnlib.DeviceConfig ( cpu_only=self.cpu_only, force_gpu_idx=self.device_idx, allow_growth=True)
if self.type == 'rects':
if self.detector is not None:
if self.detector == 'mt':
nnlib.import_all (device_config)
self.e = facelib.MTCExtractor()
self.e = facelib.MTCExtractor()
elif self.detector == 'dlib':
nnlib.import_dlib (device_config)
self.e = facelib.DLIBExtractor(nnlib.dlib)
@ -53,10 +53,10 @@ class ExtractSubprocessor(Subprocessor):
self.e = facelib.S3FDExtractor()
else:
raise ValueError ("Wrong detector type.")
if self.e is not None:
self.e.__enter__()
elif self.type == 'landmarks':
nnlib.import_all (device_config)
self.e = facelib.LandmarksExtractor(nnlib.keras)
@ -66,15 +66,15 @@ class ExtractSubprocessor(Subprocessor):
self.second_pass_e.__enter__()
else:
self.second_pass_e = None
elif self.type == 'final':
pass
#override
def on_finalize(self):
if self.e is not None:
self.e.__exit__()
#override
def process_data(self, data):
filename_path = Path( data[0] )
@ -84,64 +84,64 @@ class ExtractSubprocessor(Subprocessor):
image = self.cached_image[1] #cached image for manual extractor
else:
image = cv2_imread( filename_path_str )
if image is None:
self.log_err ( 'Failed to extract %s, reason: cv2_imread() fail.' % ( str(filename_path) ) )
return None
image_shape = image.shape
if len(image_shape) == 2:
h, w = image.shape
ch = 1
ch = 1
else:
h, w, ch = image.shape
if ch == 1:
image = np.repeat ( image [:,:,np.newaxis], 3, -1 )
elif ch == 4:
image = image[:,:,0:3]
wm = w % 2
hm = h % 2
if wm + hm != 0: #fix odd image
image = image[0:h-hm,0:w-wm,:]
self.cached_image = ( filename_path_str, image )
src_dflimg = None
h, w, ch = image.shape
h, w, ch = image.shape
if h == w:
#extracting from already extracted jpg image?
if filename_path.suffix == '.jpg':
src_dflimg = DFLJPG.load ( str(filename_path) )
if self.type == 'rects':
if min(w,h) < 128:
self.log_err ( 'Image is too small %s : [%d, %d]' % ( str(filename_path), w, h ) )
rects = []
else:
else:
rects = self.e.extract_from_bgr (image)
return [str(filename_path), rects]
elif self.type == 'landmarks':
rects = data[1]
if rects is None:
landmarks = None
else:
landmarks = self.e.extract_from_bgr (image, rects, self.second_pass_e if src_dflimg is None else None)
else:
landmarks = self.e.extract_from_bgr (image, rects, self.second_pass_e if src_dflimg is None else None)
return [str(filename_path), landmarks]
elif self.type == 'final':
result = []
faces = data[1]
if self.debug_dir is not None:
debug_output_file = str( Path(self.debug_dir) / (filename_path.stem+'.jpg') )
debug_image = image.copy()
if src_dflimg is not None and len(faces) != 1:
#if re-extracting from dflimg and more than 1 or zero faces detected - dont process and just copy it
print("src_dflimg is not None and len(faces) != 1", str(filename_path) )
@ -151,26 +151,26 @@ class ExtractSubprocessor(Subprocessor):
result.append (output_file)
else:
face_idx = 0
for face in faces:
for face in faces:
rect = np.array(face[0])
image_landmarks = face[1]
if image_landmarks is None:
continue
image_landmarks = np.array(image_landmarks)
if self.face_type == FaceType.MARK_ONLY:
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
landmarks_bbox = LandmarksProcessor.transform_points ( [ (0,0), (0,self.image_size-1), (self.image_size-1, self.image_size-1), (self.image_size-1,0) ], image_to_face_mat, True)
rect_area = mathlib.polygon_area(np.array(rect[[0,2,2,0]]), np.array(rect[[1,1,3,3]]))
landmarks_area = mathlib.polygon_area(landmarks_bbox[:,0], landmarks_bbox[:,1] )
if landmarks_area > 4*rect_area: #get rid of faces which umeyama-landmark-area > 4*detector-rect-area
continue
@ -192,24 +192,24 @@ class ExtractSubprocessor(Subprocessor):
source_rect=rect,
source_landmarks=image_landmarks.tolist(),
image_to_face_mat=image_to_face_mat
)
)
result.append (output_file)
face_idx += 1
if self.debug_dir is not None:
cv2_imwrite(debug_output_file, debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
return result
return result
#overridable
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_data, type, image_size, face_type, debug_dir, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, detector=None, output_path=None):
def __init__(self, input_data, type, image_size, face_type, debug_dir, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, detector=None, output_path=None):
self.input_data = input_data
self.type = type
self.image_size = image_size
@ -218,8 +218,8 @@ class ExtractSubprocessor(Subprocessor):
self.multi_gpu = multi_gpu
self.cpu_only = cpu_only
self.detector = detector
self.output_path = output_path
self.manual = manual
self.output_path = output_path
self.manual = manual
self.manual_window_size = manual_window_size
self.result = []
@ -233,32 +233,32 @@ class ExtractSubprocessor(Subprocessor):
io.named_window(self.wnd_name)
io.capture_mouse(self.wnd_name)
io.capture_keys(self.wnd_name)
self.cache_original_image = (None, None)
self.cache_image = (None, None)
self.cache_text_lines_img = (None, None)
self.hide_help = False
self.landmarks = None
self.x = 0
self.y = 0
self.rect_size = 100
self.rect_locked = False
self.extract_needed = True
io.progress_bar (None, len (self.input_data))
#override
def on_clients_finalized(self):
if self.manual == True:
io.destroy_all_windows()
io.progress_bar_close()
def get_devices_for_type (self, type, multi_gpu, cpu_only):
if 'cpu' in nnlib.device.backend:
cpu_only = True
if not cpu_only and (type == 'rects' or type == 'landmarks'):
if type == 'rects' and (self.detector == 'mt') and nnlib.device.backend == "plaidML":
cpu_only = True
@ -269,11 +269,11 @@ class ExtractSubprocessor(Subprocessor):
devices = [nnlib.device.getBestValidDeviceIdx()]
if len(devices) == 0:
devices = [0]
for idx in devices:
dev_name = nnlib.device.getDeviceName(idx)
dev_vram = nnlib.device.getDeviceVRAMTotalGb(idx)
if not self.manual and ( self.type == 'rects' and self.detector != 's3fd' ):
for i in range ( int (max (1, dev_vram / 2) ) ):
yield (idx, 'GPU', '%s #%d' % (dev_name,i) , dev_vram)
@ -286,21 +286,21 @@ class ExtractSubprocessor(Subprocessor):
else:
for i in range( min(8, multiprocessing.cpu_count() // 2) ):
yield (i, 'CPU', 'CPU%d' % (i), 0 )
if type == 'final':
for i in range( min(8, multiprocessing.cpu_count()) ):
yield (i, 'CPU', 'CPU%d' % (i), 0 )
yield (i, 'CPU', 'CPU%d' % (i), 0 )
#override
def process_info_generator(self):
base_dict = {'type' : self.type,
'image_size': self.image_size,
'face_type': self.face_type,
'debug_dir': self.debug_dir,
'output_dir': str(self.output_path),
base_dict = {'type' : self.type,
'image_size': self.image_size,
'face_type': self.face_type,
'debug_dir': self.debug_dir,
'output_dir': str(self.output_path),
'detector': self.detector}
for (device_idx, device_type, device_name, device_total_vram_gb) in self.get_devices_for_type(self.type, self.multi_gpu, self.cpu_only):
for (device_idx, device_type, device_name, device_total_vram_gb) in self.get_devices_for_type(self.type, self.multi_gpu, self.cpu_only):
client_dict = base_dict.copy()
client_dict['device_idx'] = device_idx
client_dict['device_name'] = device_name
@ -311,7 +311,7 @@ class ExtractSubprocessor(Subprocessor):
def get_data(self, host_dict):
if not self.manual:
if len (self.input_data) > 0:
return self.input_data.pop(0)
return self.input_data.pop(0)
else:
need_remark_face = False
@ -327,7 +327,7 @@ class ExtractSubprocessor(Subprocessor):
self.rect, self.landmarks = faces.pop()
faces.clear()
redraw_needed = True
self.rect_locked = True
self.rect_locked = True
self.rect_size = ( self.rect[2] - self.rect[0] ) / 2
self.x = ( self.rect[0] + self.rect[2] ) / 2
self.y = ( self.rect[1] + self.rect[3] ) / 2
@ -338,19 +338,19 @@ class ExtractSubprocessor(Subprocessor):
else:
self.original_image = cv2_imread( filename )
self.cache_original_image = (filename, self.original_image )
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / ( h * (16.0/9.0) )
if self.cache_image[0] == (h,w,c) + (self.view_scale,filename):
self.image = self.cache_image[1]
else:
self.image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
else:
self.image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
self.cache_image = ( (h,w,c) + (self.view_scale,filename), self.image )
(h,w,c) = self.image.shape
sh = (0,0, w, min(100, h) )
sh = (0,0, w, min(100, h) )
if self.cache_text_lines_img[0] == sh:
self.text_lines_img = self.cache_text_lines_img[1]
else:
@ -362,30 +362,30 @@ class ExtractSubprocessor(Subprocessor):
'[,] [.]- prev frame, next frame. [Q] - skip remaining frames',
'[h] - hide this help'
], (1, 1, 1) )*255).astype(np.uint8)
self.cache_text_lines_img = (sh, self.text_lines_img)
while True:
io.process_messages(0.0001)
new_x = self.x
new_y = self.y
new_rect_size = self.rect_size
mouse_events = io.get_mouse_events(self.wnd_name)
for ev in mouse_events:
(x, y, ev, flags) = ev
if ev == io.EVENT_MOUSEWHEEL and not self.rect_locked:
mod = 1 if flags > 0 else -1
mod = 1 if flags > 0 else -1
diff = 1 if new_rect_size <= 40 else np.clip(new_rect_size / 10, 1, 10)
new_rect_size = max (5, new_rect_size + diff*mod)
new_rect_size = max (5, new_rect_size + diff*mod)
elif ev == io.EVENT_LBUTTONDOWN:
self.rect_locked = not self.rect_locked
self.extract_needed = True
elif not self.rect_locked:
new_x = np.clip (x, 0, w-1) / self.view_scale
new_y = np.clip (y, 0, h-1) / self.view_scale
key_events = io.get_key_events(self.wnd_name)
key, = key_events[-1] if len(key_events) > 0 else (0,)
@ -393,48 +393,48 @@ class ExtractSubprocessor(Subprocessor):
#confirm frame
is_frame_done = True
faces.append ( [(self.rect), self.landmarks] )
break
elif key == ord(' '):
#confirm skip frame
is_frame_done = True
break
elif key == ord(',') and len(self.result) > 0:
#go prev frame
elif key == ord(',') and len(self.result) > 0:
#go prev frame
if self.rect_locked:
# Only save the face if the rect is still locked
faces.append ( [(self.rect), self.landmarks] )
self.input_data.insert(0, self.result.pop() )
io.progress_bar_inc(-1)
need_remark_face = True
break
elif key == ord('.'):
#go next frame
elif key == ord('.'):
#go next frame
if self.rect_locked:
# Only save the face if the rect is still locked
faces.append ( [(self.rect), self.landmarks] )
need_remark_face = True
is_frame_done = True
break
break
elif key == ord('q'):
#skip remaining
if self.rect_locked:
faces.append ( [(self.rect), self.landmarks] )
while len(self.input_data) > 0:
self.result.append( self.input_data.pop(0) )
io.progress_bar_inc(1)
break
elif key == ord('h'):
self.hide_help = not self.hide_help
break
if self.x != new_x or \
self.y != new_y or \
self.rect_size != new_rect_size or \
@ -443,33 +443,33 @@ class ExtractSubprocessor(Subprocessor):
self.x = new_x
self.y = new_y
self.rect_size = new_rect_size
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
int(self.y+self.rect_size) )
if redraw_needed:
redraw_needed = False
return [filename, None]
else:
return [filename, [self.rect]]
else:
is_frame_done = True
if is_frame_done:
self.result.append ( data )
self.input_data.pop(0)
io.progress_bar_inc(1)
self.extract_needed = True
self.rect_locked = False
self.rect_locked = False
return None
#override
def on_data_return (self, host_dict, data):
if not self.manual:
self.input_data.insert(0, data)
self.input_data.insert(0, data)
#override
def on_result (self, host_dict, data, result):
@ -477,33 +477,33 @@ class ExtractSubprocessor(Subprocessor):
filename, landmarks = result
if landmarks is not None:
self.landmarks = landmarks[0][1]
(h,w,c) = self.image.shape
if not self.hide_help:
image = cv2.addWeighted (self.image,1.0,self.text_lines_img,1.0,0)
else:
image = self.image.copy()
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
if self.rect_size <= 40:
scaled_rect_size = h // 3 if w > h else w // 3
p1 = (self.x - self.rect_size, self.y - self.rect_size)
p2 = (self.x + self.rect_size, self.y - self.rect_size)
p3 = (self.x - self.rect_size, self.y + self.rect_size)
wh = h if h < w else w
wh = h if h < w else w
np1 = (w / 2 - wh / 4, h / 2 - wh / 4)
np2 = (w / 2 + wh / 4, h / 2 - wh / 4)
np3 = (w / 2 - wh / 4, h / 2 + wh / 4)
mat = cv2.getAffineTransform( np.float32([p1,p2,p3])*self.view_scale, np.float32([np1,np2,np3]) )
image = cv2.warpAffine(image, mat,(w,h) )
image = cv2.warpAffine(image, mat,(w,h) )
view_landmarks = LandmarksProcessor.transform_points (view_landmarks, mat)
landmarks_color = (255,255,0) if self.rect_locked else (0,255,0)
LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.image_size, self.face_type, landmarks_color=landmarks_color)
self.extract_needed = False
@ -513,10 +513,10 @@ class ExtractSubprocessor(Subprocessor):
if self.type == 'rects':
self.result.append ( result )
elif self.type == 'landmarks':
self.result.append ( result )
self.result.append ( result )
elif self.type == 'final':
self.result += result
io.progress_bar_inc(1)
#override
@ -530,47 +530,47 @@ class DeletedFilesSearcherSubprocessor(Subprocessor):
def on_initialize(self, client_dict):
self.debug_paths_stems = client_dict['debug_paths_stems']
return None
#override
def process_data(self, data):
input_path_stem = Path(data[0]).stem
def process_data(self, data):
input_path_stem = Path(data[0]).stem
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_paths, debug_paths ):
def __init__(self, input_paths, debug_paths ):
self.input_paths = input_paths
self.debug_paths_stems = [ Path(d).stem for d in debug_paths]
self.debug_paths_stems = [ Path(d).stem for d in debug_paths]
self.result = []
super().__init__('DeletedFilesSearcherSubprocessor', DeletedFilesSearcherSubprocessor.Cli, 60)
super().__init__('DeletedFilesSearcherSubprocessor', DeletedFilesSearcherSubprocessor.Cli, 60)
#override
def process_info_generator(self):
def process_info_generator(self):
for i in range(min(multiprocessing.cpu_count(), 8)):
yield 'CPU%d' % (i), {}, {'debug_paths_stems' : self.debug_paths_stems}
#override
def on_clients_initialized(self):
io.progress_bar ("Searching deleted files", len (self.input_paths))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.input_paths) > 0:
return [self.input_paths.pop(0)]
if len (self.input_paths) > 0:
return [self.input_paths.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.input_paths.insert(0, data[0])
self.input_paths.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
if result == False:
@ -591,40 +591,40 @@ def main(input_dir,
image_size=256,
face_type='full_face',
device_args={}):
input_path = Path(input_dir)
output_path = Path(output_dir)
face_type = FaceType.fromString(face_type)
multi_gpu = device_args.get('multi_gpu', False)
cpu_only = device_args.get('cpu_only', False)
if not input_path.exists():
raise ValueError('Input directory not found. Please ensure it exists.')
if output_path.exists():
if not manual_output_debug_fix and input_path != output_path:
for filename in Path_utils.get_image_paths(output_path):
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if manual_output_debug_fix:
if debug_dir is None:
raise ValueError('debug-dir must be specified')
detector = 'manual'
io.log_info('Performing re-extract frames which were deleted from _debug directory.')
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)
if debug_dir is not None:
debug_output_path = Path(debug_dir)
if manual_output_debug_fix:
if not debug_output_path.exists():
raise ValueError("%s not found " % ( str(debug_output_path) ))
input_path_image_paths = DeletedFilesSearcherSubprocessor (input_path_image_paths, Path_utils.get_image_paths(debug_output_path) ).run()
input_path_image_paths = sorted (input_path_image_paths)
input_path_image_paths = sorted (input_path_image_paths)
else:
if debug_output_path.exists():
for filename in Path_utils.get_image_paths(debug_output_path):
@ -634,20 +634,20 @@ def main(input_dir,
images_found = len(input_path_image_paths)
faces_detected = 0
if images_found != 0:
if images_found != 0:
if detector == 'manual':
io.log_info ('Performing manual extract...')
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug_dir, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).run()
else:
io.log_info ('Performing 1st pass...')
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, detector=detector).run()
io.log_info ('Performing 2nd pass...')
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
if manual_fix:
io.log_info ('Performing manual fix...')
if all ( np.array ( [ len(data[1]) > 0 for data in extracted_faces] ) == True ):
io.log_info ('All faces are detected, manual fix not needed.')
else:
@ -657,8 +657,8 @@ def main(input_dir,
io.log_info ('Performing 3rd pass...')
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug_dir, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, output_path=output_path).run()
faces_detected = len(final_imgs_paths)
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )
io.log_info ('-------------------------')
io.log_info ('-------------------------')