mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 06:23:20 -07:00
Formatting
This commit is contained in:
parent
62c7be73b6
commit
9a41965063
1 changed files with 81 additions and 70 deletions
|
@ -7,7 +7,6 @@ import numpy as np
|
|||
import imagelib
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
|
||||
|
||||
"""
|
||||
output_sample_types = [
|
||||
{} opts,
|
||||
|
@ -42,6 +41,7 @@ opts:
|
|||
|
||||
"""
|
||||
|
||||
|
||||
class SampleProcessor(object):
|
||||
class Types(IntEnum):
|
||||
NONE = 0
|
||||
|
@ -51,7 +51,7 @@ class SampleProcessor(object):
|
|||
IMG_WARPED = 2
|
||||
IMG_WARPED_TRANSFORMED = 3
|
||||
IMG_TRANSFORMED = 4
|
||||
IMG_LANDMARKS_ARRAY = 5 #currently unused
|
||||
IMG_LANDMARKS_ARRAY = 5 # currently unused
|
||||
IMG_PITCH_YAW_ROLL = 6
|
||||
IMG_PITCH_YAW_ROLL_SIGMOID = 7
|
||||
IMG_TYPE_END = 10
|
||||
|
@ -59,21 +59,22 @@ class SampleProcessor(object):
|
|||
FACE_TYPE_BEGIN = 10
|
||||
FACE_TYPE_HALF = 10
|
||||
FACE_TYPE_FULL = 11
|
||||
FACE_TYPE_HEAD = 12 #currently unused
|
||||
FACE_TYPE_AVATAR = 13 #currently unused
|
||||
FACE_TYPE_HEAD = 12 # currently unused
|
||||
FACE_TYPE_AVATAR = 13 # currently unused
|
||||
FACE_TYPE_END = 20
|
||||
|
||||
MODE_BEGIN = 40
|
||||
MODE_BGR = 40 #BGR
|
||||
MODE_G = 41 #Grayscale
|
||||
MODE_GGG = 42 #3xGrayscale
|
||||
MODE_M = 43 #mask only
|
||||
MODE_BGR_SHUFFLE = 44 #BGR shuffle
|
||||
MODE_BGR = 40 # BGR
|
||||
MODE_G = 41 # Grayscale
|
||||
MODE_GGG = 42 # 3xGrayscale
|
||||
MODE_M = 43 # mask only
|
||||
MODE_BGR_SHUFFLE = 44 # BGR shuffle
|
||||
MODE_END = 50
|
||||
|
||||
class Options(object):
|
||||
|
||||
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
|
||||
def __init__(self, random_flip=True, rotation_range=[-10, 10], scale_range=[-0.05, 0.05],
|
||||
tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05]):
|
||||
self.random_flip = random_flip
|
||||
self.rotation_range = rotation_range
|
||||
self.scale_range = scale_range
|
||||
|
@ -81,35 +82,39 @@ class SampleProcessor(object):
|
|||
self.ty_range = ty_range
|
||||
|
||||
@staticmethod
|
||||
def process (sample, sample_process_options, output_sample_types, debug, ct_sample=None):
|
||||
def process(sample, sample_process_options, output_sample_types, debug, ct_sample=None):
|
||||
SPTF = SampleProcessor.Types
|
||||
|
||||
sample_bgr = sample.load_bgr()
|
||||
ct_sample_bgr = None
|
||||
ct_sample_mask = None
|
||||
h,w,c = sample_bgr.shape
|
||||
h, w, c = sample_bgr.shape
|
||||
|
||||
is_face_sample = sample.landmarks is not None
|
||||
|
||||
if debug and is_face_sample:
|
||||
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
|
||||
LandmarksProcessor.draw_landmarks(sample_bgr, sample.landmarks, (0, 1, 0))
|
||||
|
||||
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
||||
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip,
|
||||
rotation_range=sample_process_options.rotation_range,
|
||||
scale_range=sample_process_options.scale_range,
|
||||
tx_range=sample_process_options.tx_range,
|
||||
ty_range=sample_process_options.ty_range)
|
||||
|
||||
cached_images = collections.defaultdict(dict)
|
||||
|
||||
sample_rnd_seed = np.random.randint(0x80000000)
|
||||
|
||||
SPTF_FACETYPE_TO_FACETYPE = { SPTF.FACE_TYPE_HALF : FaceType.HALF,
|
||||
SPTF.FACE_TYPE_FULL : FaceType.FULL,
|
||||
SPTF.FACE_TYPE_HEAD : FaceType.HEAD,
|
||||
SPTF.FACE_TYPE_AVATAR : FaceType.AVATAR }
|
||||
SPTF_FACETYPE_TO_FACETYPE = {SPTF.FACE_TYPE_HALF: FaceType.HALF,
|
||||
SPTF.FACE_TYPE_FULL: FaceType.FULL,
|
||||
SPTF.FACE_TYPE_HEAD: FaceType.HEAD,
|
||||
SPTF.FACE_TYPE_AVATAR: FaceType.AVATAR}
|
||||
|
||||
outputs = []
|
||||
for opts in output_sample_types:
|
||||
|
||||
resolution = opts.get('resolution', 0)
|
||||
types = opts.get('types', [] )
|
||||
types = opts.get('types', [])
|
||||
|
||||
random_sub_res = opts.get('random_sub_res', 0)
|
||||
normalize_std_dev = opts.get('normalize_std_dev', False)
|
||||
|
@ -131,11 +136,11 @@ class SampleProcessor(object):
|
|||
mode_type = t
|
||||
|
||||
if img_type == SPTF.NONE:
|
||||
raise ValueError ('expected IMG_ type')
|
||||
raise ValueError('expected IMG_ type')
|
||||
|
||||
if img_type == SPTF.IMG_LANDMARKS_ARRAY:
|
||||
l = sample.landmarks
|
||||
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
||||
l = np.concatenate([np.expand_dims(l[:, 0] / w, -1), np.expand_dims(l[:, 1] / h, -1)], -1)
|
||||
l = np.clip(l, 0.0, 1.0)
|
||||
img = l
|
||||
elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
|
||||
|
@ -143,19 +148,19 @@ class SampleProcessor(object):
|
|||
if pitch_yaw_roll is not None:
|
||||
pitch, yaw, roll = pitch_yaw_roll
|
||||
else:
|
||||
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll (sample.landmarks)
|
||||
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll(sample.landmarks)
|
||||
if params['flip']:
|
||||
yaw = -yaw
|
||||
|
||||
if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
|
||||
pitch = (pitch+1.0) / 2.0
|
||||
yaw = (yaw+1.0) / 2.0
|
||||
roll = (roll+1.0) / 2.0
|
||||
pitch = (pitch + 1.0) / 2.0
|
||||
yaw = (yaw + 1.0) / 2.0
|
||||
roll = (roll + 1.0) / 2.0
|
||||
|
||||
img = (pitch, yaw, roll)
|
||||
else:
|
||||
if mode_type == SPTF.NONE:
|
||||
raise ValueError ('expected MODE_ type')
|
||||
raise ValueError('expected MODE_ type')
|
||||
|
||||
img = cached_images.get(img_type, None)
|
||||
if img is None:
|
||||
|
@ -170,98 +175,104 @@ class SampleProcessor(object):
|
|||
chance = np.clip(chance, 0, 100)
|
||||
|
||||
if np.random.randint(100) < chance:
|
||||
mb_range = [3,5,7,9][ : np.clip(mb_range, 0, 3)+1 ]
|
||||
dim = mb_range[ np.random.randint(len(mb_range) ) ]
|
||||
img = imagelib.LinearMotionBlur (img, dim, np.random.randint(180) )
|
||||
mb_range = [3, 5, 7, 9][: np.clip(mb_range, 0, 3) + 1]
|
||||
dim = mb_range[np.random.randint(len(mb_range))]
|
||||
img = imagelib.LinearMotionBlur(img, dim, np.random.randint(180))
|
||||
|
||||
mask = cur_sample.load_fanseg_mask() #using fanseg_mask if exist
|
||||
mask = cur_sample.load_fanseg_mask() # using fanseg_mask if exist
|
||||
|
||||
if mask is None:
|
||||
mask = LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks)
|
||||
mask = LandmarksProcessor.get_image_hull_mask(img.shape, cur_sample.landmarks)
|
||||
|
||||
if cur_sample.ie_polys is not None:
|
||||
cur_sample.ie_polys.overlay_mask(mask)
|
||||
|
||||
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
|
||||
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
|
||||
warp = (img_type == SPTF.IMG_WARPED or img_type == SPTF.IMG_WARPED_TRANSFORMED)
|
||||
transform = (img_type == SPTF.IMG_WARPED_TRANSFORMED or img_type == SPTF.IMG_TRANSFORMED)
|
||||
flip = img_type != SPTF.IMG_WARPED
|
||||
|
||||
img = imagelib.warp_by_params (params, img, warp, transform, flip, True)
|
||||
img = imagelib.warp_by_params(params, img, warp, transform, flip, True)
|
||||
if mask is not None:
|
||||
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)[...,np.newaxis]
|
||||
img = np.concatenate( (img, mask ), -1 )
|
||||
mask = imagelib.warp_by_params(params, mask, warp, transform, flip, False)[..., np.newaxis]
|
||||
img = np.concatenate((img, mask), -1)
|
||||
|
||||
cached_images[img_type] = img
|
||||
|
||||
if is_face_sample and target_face_type != SPTF.NONE:
|
||||
ft = SPTF_FACETYPE_TO_FACETYPE[target_face_type]
|
||||
if ft > sample.face_type:
|
||||
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, ft) )
|
||||
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, ft), (resolution,resolution), flags=cv2.INTER_CUBIC )
|
||||
raise Exception(
|
||||
'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (
|
||||
sample.filename, sample.face_type, ft))
|
||||
img = cv2.warpAffine(img, LandmarksProcessor.get_transform_mat(sample.landmarks, resolution, ft),
|
||||
(resolution, resolution), flags=cv2.INTER_CUBIC)
|
||||
else:
|
||||
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
|
||||
img = cv2.resize(img, (resolution, resolution), cv2.INTER_CUBIC)
|
||||
|
||||
if random_sub_res != 0:
|
||||
sub_size = resolution - random_sub_res
|
||||
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_res)
|
||||
start_x = rnd_state.randint(sub_size+1)
|
||||
start_y = rnd_state.randint(sub_size+1)
|
||||
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
||||
rnd_state = np.random.RandomState(sample_rnd_seed + random_sub_res)
|
||||
start_x = rnd_state.randint(sub_size + 1)
|
||||
start_y = rnd_state.randint(sub_size + 1)
|
||||
img = img[start_y:start_y + sub_size, start_x:start_x + sub_size, :]
|
||||
|
||||
img = np.clip(img, 0, 1)
|
||||
img_bgr = img[...,0:3]
|
||||
img_mask = img[...,3:4]
|
||||
img_bgr = img[..., 0:3]
|
||||
img_mask = img[..., 3:4]
|
||||
|
||||
if apply_ct and ct_sample is not None:
|
||||
if ct_sample_bgr is None:
|
||||
ct_sample_bgr = ct_sample.load_bgr()
|
||||
|
||||
ct_sample_bgr_resized = cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR )
|
||||
ct_sample_bgr_resized = cv2.resize(ct_sample_bgr, (resolution, resolution), cv2.INTER_LINEAR)
|
||||
|
||||
img_bgr = imagelib.linear_color_transfer (img_bgr, ct_sample_bgr_resized)
|
||||
img_bgr = np.clip( img_bgr, 0.0, 1.0)
|
||||
img_bgr = imagelib.linear_color_transfer(img_bgr, ct_sample_bgr_resized)
|
||||
img_bgr = np.clip(img_bgr, 0.0, 1.0)
|
||||
|
||||
if normalize_std_dev:
|
||||
img_bgr = (img_bgr - img_bgr.mean( (0,1)) ) / img_bgr.std( (0,1) )
|
||||
img_bgr = (img_bgr - img_bgr.mean((0, 1))) / img_bgr.std((0, 1))
|
||||
elif normalize_vgg:
|
||||
img_bgr = np.clip(img_bgr*255, 0, 255)
|
||||
img_bgr[:,:,0] -= 103.939
|
||||
img_bgr[:,:,1] -= 116.779
|
||||
img_bgr[:,:,2] -= 123.68
|
||||
img_bgr = np.clip(img_bgr * 255, 0, 255)
|
||||
img_bgr[:, :, 0] -= 103.939
|
||||
img_bgr[:, :, 1] -= 116.779
|
||||
img_bgr[:, :, 2] -= 123.68
|
||||
|
||||
if mode_type == SPTF.MODE_BGR:
|
||||
img = img_bgr
|
||||
elif mode_type == SPTF.MODE_BGR_SHUFFLE:
|
||||
rnd_state = np.random.RandomState (sample_rnd_seed)
|
||||
img = np.take (img_bgr, rnd_state.permutation(img_bgr.shape[-1]), axis=-1)
|
||||
rnd_state = np.random.RandomState(sample_rnd_seed)
|
||||
img = np.take(img_bgr, rnd_state.permutation(img_bgr.shape[-1]), axis=-1)
|
||||
elif mode_type == SPTF.MODE_G:
|
||||
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
||||
img = np.concatenate((np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY), -1), img_mask), -1)
|
||||
elif mode_type == SPTF.MODE_GGG:
|
||||
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
||||
img = np.concatenate(
|
||||
(np.repeat(np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY), -1), (3,), -1), img_mask),
|
||||
-1)
|
||||
elif mode_type == SPTF.MODE_M and is_face_sample:
|
||||
img = img_mask
|
||||
|
||||
if not debug:
|
||||
if normalize_tanh:
|
||||
img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
|
||||
img = np.clip(img * 2.0 - 1.0, -1.0, 1.0)
|
||||
else:
|
||||
img = np.clip (img, 0.0, 1.0)
|
||||
img = np.clip(img, 0.0, 1.0)
|
||||
|
||||
outputs.append ( img )
|
||||
outputs.append(img)
|
||||
|
||||
if debug:
|
||||
result = []
|
||||
|
||||
for output in outputs:
|
||||
if output.shape[2] < 4:
|
||||
result += [output,]
|
||||
result += [output, ]
|
||||
elif output.shape[2] == 4:
|
||||
result += [output[...,0:3]*output[...,3:4],]
|
||||
result += [output[..., 0:3] * output[..., 3:4], ]
|
||||
|
||||
return result
|
||||
else:
|
||||
return outputs
|
||||
|
||||
|
||||
"""
|
||||
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
|
||||
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue