upd SampleGenerator

This commit is contained in:
Colombo 2020-02-27 09:58:46 +04:00
parent 1898bd6881
commit 9860a38907
4 changed files with 42 additions and 33 deletions

View file

@ -2,14 +2,12 @@ import numpy as np
import cv2 import cv2
from core import randomex from core import randomex
def gen_warp_params (source, flip, rotation_range=[-10,10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_seed=None ): def gen_warp_params (source, flip, rotation_range=[-10,10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ):
h,w,c = source.shape h,w,c = source.shape
if (h != w): if (h != w):
raise ValueError ('gen_warp_params accepts only square images.') raise ValueError ('gen_warp_params accepts only square images.')
if rnd_seed != None: if rnd_state is None:
rnd_state = np.random.RandomState (rnd_seed)
else:
rnd_state = np.random rnd_state = np.random
rotation = rnd_state.uniform( rotation_range[0], rotation_range[1] ) rotation = rnd_state.uniform( rotation_range[0], rotation_range[1] )

View file

@ -99,15 +99,17 @@ class IndexHost():
""" """
Provides random shuffled indexes for multiprocesses Provides random shuffled indexes for multiprocesses
""" """
def __init__(self, indexes_count): def __init__(self, indexes_count, rnd_seed=None):
self.sq = multiprocessing.Queue() self.sq = multiprocessing.Queue()
self.cqs = [] self.cqs = []
self.clis = [] self.clis = []
self.thread = threading.Thread(target=self.host_thread, args=(indexes_count,) ) self.thread = threading.Thread(target=self.host_thread, args=(indexes_count,rnd_seed) )
self.thread.daemon = True self.thread.daemon = True
self.thread.start() self.thread.start()
def host_thread(self, indexes_count): def host_thread(self, indexes_count, rnd_seed):
rnd_state = np.random.RandomState(rnd_seed) if rnd_seed is not None else np.random
idxs = [*range(indexes_count)] idxs = [*range(indexes_count)]
shuffle_idxs = [] shuffle_idxs = []
sq = self.sq sq = self.sq
@ -121,7 +123,7 @@ class IndexHost():
for i in range(count): for i in range(count):
if len(shuffle_idxs) == 0: if len(shuffle_idxs) == 0:
shuffle_idxs = idxs.copy() shuffle_idxs = idxs.copy()
np.random.shuffle(shuffle_idxs) rnd_state.shuffle(shuffle_idxs)
result.append(shuffle_idxs.pop()) result.append(shuffle_idxs.pop())
self.cqs[cq_id].put (result) self.cqs[cq_id].put (result)

View file

@ -27,6 +27,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
output_sample_types=[], output_sample_types=[],
add_sample_idx=False, add_sample_idx=False,
generators_count=4, generators_count=4,
rnd_seed=None,
**kwargs): **kwargs):
super().__init__(samples_path, debug, batch_size) super().__init__(samples_path, debug, batch_size)
@ -34,6 +35,9 @@ class SampleGeneratorFace(SampleGeneratorBase):
self.output_sample_types = output_sample_types self.output_sample_types = output_sample_types
self.add_sample_idx = add_sample_idx self.add_sample_idx = add_sample_idx
if rnd_seed is None:
rnd_seed = np.random.randint(0x80000000)
if self.debug: if self.debug:
self.generators_count = 1 self.generators_count = 1
else: else:
@ -45,11 +49,11 @@ class SampleGeneratorFace(SampleGeneratorBase):
if self.samples_len == 0: if self.samples_len == 0:
raise ValueError('No training data provided.') raise ValueError('No training data provided.')
index_host = mplib.IndexHost(self.samples_len) index_host = mplib.IndexHost(self.samples_len, rnd_seed=rnd_seed)
if random_ct_samples_path is not None: if random_ct_samples_path is not None:
ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path) ct_samples = SampleLoader.load (SampleType.FACE, random_ct_samples_path)
ct_index_host = mplib.IndexHost( len(ct_samples) ) ct_index_host = mplib.IndexHost( len(ct_samples), rnd_seed=rnd_seed )
else: else:
ct_samples = None ct_samples = None
ct_index_host = None ct_index_host = None
@ -58,9 +62,9 @@ class SampleGeneratorFace(SampleGeneratorBase):
ct_pickled_samples = pickle.dumps(ct_samples, 4) if ct_samples is not None else None ct_pickled_samples = pickle.dumps(ct_samples, 4) if ct_samples is not None else None
if self.debug: if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None) )] self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None, rnd_seed) )]
else: else:
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=False ) \ self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None, rnd_seed), start_now=False ) \
for i in range(self.generators_count) ] for i in range(self.generators_count) ]
SubprocessGenerator.start_in_parallel( self.generators ) SubprocessGenerator.start_in_parallel( self.generators )
@ -76,7 +80,9 @@ class SampleGeneratorFace(SampleGeneratorBase):
return next(generator) return next(generator)
def batch_func(self, param ): def batch_func(self, param ):
pickled_samples, index_host, ct_pickled_samples, ct_index_host = param pickled_samples, index_host, ct_pickled_samples, ct_index_host, rnd_seed = param
rnd_state = np.random.RandomState(rnd_seed)
samples = pickle.loads(pickled_samples) samples = pickle.loads(pickled_samples)
ct_samples = pickle.loads(ct_pickled_samples) if ct_pickled_samples is not None else None ct_samples = pickle.loads(ct_pickled_samples) if ct_pickled_samples is not None else None
@ -98,7 +104,7 @@ class SampleGeneratorFace(SampleGeneratorBase):
ct_sample = ct_samples[ct_indexes[n_batch]] ct_sample = ct_samples[ct_indexes[n_batch]]
try: try:
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample) x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug, ct_sample=ct_sample, rnd_state=rnd_state)
except: except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )

View file

@ -63,10 +63,13 @@ class SampleProcessor(object):
} }
@staticmethod @staticmethod
def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None): def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None, rnd_state=None):
SPTF = SampleProcessor.Types SPTF = SampleProcessor.Types
sample_rnd_seed = np.random.randint(0x80000000) if rnd_state is None:
rnd_state = np.random.RandomState( np.random.randint(0x80000000) )
sample_rnd_seed = rnd_state.randint(0x80000000)
outputs = [] outputs = []
for sample in samples: for sample in samples:
@ -79,7 +82,7 @@ class SampleProcessor(object):
if debug and is_face_sample: if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0)) LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range, rnd_seed=sample_rnd_seed ) params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range, rnd_state=rnd_state )
outputs_sample = [] outputs_sample = []
for opts in output_sample_types: for opts in output_sample_types:
@ -186,10 +189,10 @@ class SampleProcessor(object):
chance, mb_max_size = motion_blur chance, mb_max_size = motion_blur
chance = np.clip(chance, 0, 100) chance = np.clip(chance, 0, 100)
rnd_state = np.random.RandomState (sample_rnd_seed) l_rnd_state = np.random.RandomState (sample_rnd_seed)
mblur_rnd_chance = rnd_state.randint(100) mblur_rnd_chance = l_rnd_state.randint(100)
mblur_rnd_kernel = rnd_state.randint(mb_max_size)+1 mblur_rnd_kernel = l_rnd_state.randint(mb_max_size)+1
mblur_rnd_deg = rnd_state.randint(360) mblur_rnd_deg = l_rnd_state.randint(360)
if mblur_rnd_chance < chance: if mblur_rnd_chance < chance:
img = imagelib.LinearMotionBlur (img, mblur_rnd_kernel, mblur_rnd_deg ) img = imagelib.LinearMotionBlur (img, mblur_rnd_kernel, mblur_rnd_deg )
@ -198,9 +201,9 @@ class SampleProcessor(object):
chance, kernel_max_size = gaussian_blur chance, kernel_max_size = gaussian_blur
chance = np.clip(chance, 0, 100) chance = np.clip(chance, 0, 100)
rnd_state = np.random.RandomState (sample_rnd_seed+1) l_rnd_state = np.random.RandomState (sample_rnd_seed+1)
gblur_rnd_chance = rnd_state.randint(100) gblur_rnd_chance = l_rnd_state.randint(100)
gblur_rnd_kernel = rnd_state.randint(kernel_max_size)*2+1 gblur_rnd_kernel = l_rnd_state.randint(kernel_max_size)*2+1
if gblur_rnd_chance < chance: if gblur_rnd_chance < chance:
img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0) img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0)
@ -260,22 +263,22 @@ class SampleProcessor(object):
if mode_type == SPTF.MODE_BGR: if mode_type == SPTF.MODE_BGR:
out_sample = img out_sample = img
elif mode_type == SPTF.MODE_BGR_SHUFFLE: elif mode_type == SPTF.MODE_BGR_SHUFFLE:
rnd_state = np.random.RandomState (sample_rnd_seed) l_rnd_state = np.random.RandomState (sample_rnd_seed)
out_sample = np.take (img, rnd_state.permutation(img.shape[-1]), axis=-1) out_sample = np.take (img, l_rnd_state.permutation(img.shape[-1]), axis=-1)
elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT: elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT:
rnd_state = np.random.RandomState (sample_rnd_seed) l_rnd_state = np.random.RandomState (sample_rnd_seed)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv) h, s, v = cv2.split(hsv)
h = (h + rnd_state.randint(360) ) % 360 h = (h + l_rnd_state.randint(360) ) % 360
s = np.clip ( s + rnd_state.random()-0.5, 0, 1 ) s = np.clip ( s + l_rnd_state.random()-0.5, 0, 1 )
v = np.clip ( v + rnd_state.random()-0.5, 0, 1 ) v = np.clip ( v + l_rnd_state.random()-0.5, 0, 1 )
hsv = cv2.merge([h, s, v]) hsv = cv2.merge([h, s, v])
out_sample = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 ) out_sample = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 )
elif mode_type == SPTF.MODE_BGR_RANDOM_RGB_LEVELS: elif mode_type == SPTF.MODE_BGR_RANDOM_RGB_LEVELS:
rnd_state = np.random.RandomState (sample_rnd_seed) l_rnd_state = np.random.RandomState (sample_rnd_seed)
np_rnd = rnd_state.rand np_rnd = l_rnd_state.rand
inBlack = np.array([np_rnd()*0.25 , np_rnd()*0.25 , np_rnd()*0.25], dtype=np.float32) inBlack = np.array([np_rnd()*0.25 , np_rnd()*0.25 , np_rnd()*0.25], dtype=np.float32)
inWhite = np.array([1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25], dtype=np.float32) inWhite = np.array([1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25], dtype=np.float32)