change 'epoch' to 'iter',

added timestamp prefix to training string
This commit is contained in:
iperov 2019-03-12 19:23:52 +04:00
parent 69174a48e0
commit 97b6fabaab
7 changed files with 93 additions and 87 deletions

View file

@ -51,53 +51,57 @@ class ModelBase(object):
self.debug = debug
self.is_training_mode = (training_data_src_path is not None and training_data_dst_path is not None)
self.epoch = 0
self.iter = 0
self.options = {}
self.loss_history = []
self.sample_for_preview = None
if self.model_data_path.exists():
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.epoch = model_data['epoch']
if self.epoch != 0:
self.iter = max( model_data.get('iter',0), model_data.get('epoch',0) )
if 'epoch' in self.options:
self.options.pop('epoch')
if self.iter != 0:
self.options = model_data['options']
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
ask_override = self.is_training_mode and self.epoch != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 2)
ask_override = self.is_training_mode and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 2)
yn_str = {True:'y',False:'n'}
if self.epoch == 0:
if self.iter == 0:
io.log_info ("\nModel first run. Enter model options as default for each run.")
if self.epoch == 0 or ask_override:
default_write_preview_history = False if self.epoch == 0 else self.options.get('write_preview_history',False)
if self.iter == 0 or ask_override:
default_write_preview_history = False if self.iter == 0 else self.options.get('write_preview_history',False)
self.options['write_preview_history'] = io.input_bool("Write preview history? (y/n ?:help skip:%s) : " % (yn_str[default_write_preview_history]) , default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
else:
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
if self.epoch == 0 or ask_override:
self.options['target_epoch'] = max(0, io.input_int("Target epoch (skip:unlimited/default) : ", 0))
if self.iter == 0 or ask_override:
self.options['target_iter'] = max(0, io.input_int("Target iteration (skip:unlimited/default) : ", 0))
else:
self.options['target_epoch'] = self.options.get('target_epoch', 0)
self.options['target_iter'] = max(model_data.get('target_iter',0), self.options.get('target_epoch',0))
if 'target_epoch' in self.options:
self.options.pop('target_epoch')
if self.epoch == 0 or ask_override:
default_batch_size = 0 if self.epoch == 0 else self.options.get('batch_size',0)
if self.iter == 0 or ask_override:
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size',0)
self.options['batch_size'] = max(0, io.input_int("Batch_size (?:help skip:0/default) : ", default_batch_size, help_message="Larger batch size is always better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
else:
self.options['batch_size'] = self.options.get('batch_size', 0)
if self.epoch == 0:
if self.iter == 0:
self.options['sort_by_yaw'] = io.input_bool("Feed faces to network sorted by yaw? (y/n ?:help skip:n) : ", False, help_message="NN will not learn src face directions that don't match dst face directions." )
else:
self.options['sort_by_yaw'] = self.options.get('sort_by_yaw', False)
if self.epoch == 0:
if self.iter == 0:
self.options['random_flip'] = io.input_bool("Flip faces randomly? (y/n ?:help skip:y) : ", True, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
else:
self.options['random_flip'] = self.options.get('random_flip', True)
if self.epoch == 0:
if self.iter == 0:
self.options['src_scale_mod'] = np.clip( io.input_int("Src face scale modifier % ( -30...30, ?:help skip:0) : ", 0, help_message="If src face shape is wider than dst, try to decrease this value to get a better result."), -30, 30)
else:
self.options['src_scale_mod'] = self.options.get('src_scale_mod', 0)
@ -106,9 +110,9 @@ class ModelBase(object):
if not self.options['write_preview_history']:
self.options.pop('write_preview_history')
self.target_epoch = self.options['target_epoch']
if self.options['target_epoch'] == 0:
self.options.pop('target_epoch')
self.target_iter = self.options['target_iter']
if self.options['target_iter'] == 0:
self.options.pop('target_iter')
self.batch_size = self.options['batch_size']
self.sort_by_yaw = self.options['sort_by_yaw']
@ -118,7 +122,7 @@ class ModelBase(object):
if self.src_scale_mod == 0:
self.options.pop('src_scale_mod')
self.onInitializeOptions(self.epoch == 0, ask_override)
self.onInitializeOptions(self.iter == 0, ask_override)
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
@ -142,7 +146,7 @@ class ModelBase(object):
if not self.preview_history_path.exists():
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.epoch == 0:
if self.iter == 0:
for filename in Path_utils.get_image_paths(self.preview_history_path):
Path(filename).unlink()
@ -153,7 +157,7 @@ class ModelBase(object):
if not isinstance(generator, SampleGeneratorBase):
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
if (self.sample_for_preview is None) or (self.epoch == 0):
if (self.sample_for_preview is None) or (self.iter == 0):
self.sample_for_preview = self.generate_next_sample()
model_summary_text = []
@ -161,7 +165,7 @@ class ModelBase(object):
model_summary_text += ["===== Model summary ====="]
model_summary_text += ["== Model name: " + self.get_model_name()]
model_summary_text += ["=="]
model_summary_text += ["== Current epoch: " + str(self.epoch)]
model_summary_text += ["== Current iteration: " + str(self.iter)]
model_summary_text += ["=="]
model_summary_text += ["== Model options:"]
for key in self.options.keys():
@ -210,7 +214,7 @@ class ModelBase(object):
pass
#overridable
def onTrainOneEpoch(self, sample, generator_list):
def onTrainOneIter(self, sample, generator_list):
#train your keras models here
#return array of losses
@ -231,11 +235,11 @@ class ModelBase(object):
raise NotImplementeError
#return existing or your own converter which derived from base
def get_target_epoch(self):
return self.target_epoch
def get_target_iter(self):
return self.target_iter
def is_reached_epoch_goal(self):
return self.target_epoch != 0 and self.epoch >= self.target_epoch
def is_reached_iter_goal(self):
return self.target_iter != 0 and self.iter >= self.target_iter
#multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
#def to_multi_gpu_model_if_possible (self, models_list):
@ -263,13 +267,13 @@ class ModelBase(object):
return self.onGetPreview (self.sample_for_preview)[0][1] #first preview, and bgr
def save(self):
io.log_info ("Saving...")
io.log_info ("Saving....", end='\r')
Path( self.get_strpath_storage_for_file('summary.txt') ).write_text(self.model_summary_text)
self.onSave()
model_data = {
'epoch': self.epoch,
'iter': self.iter,
'options': self.options,
'loss_history': self.loss_history,
'sample_for_preview' : self.sample_for_preview
@ -336,7 +340,7 @@ class ModelBase(object):
source_filename.rename ( str(target_filename) )
def debug_one_epoch(self):
def debug_one_iter(self):
images = []
for generator in self.generator_list:
for i,batch in enumerate(next(generator)):
@ -348,42 +352,42 @@ class ModelBase(object):
def generate_next_sample(self):
return [next(generator) for generator in self.generator_list]
def train_one_epoch(self):
def train_one_iter(self):
sample = self.generate_next_sample()
epoch_time = time.time()
losses = self.onTrainOneEpoch(sample, self.generator_list)
epoch_time = time.time() - epoch_time
iter_time = time.time()
losses = self.onTrainOneIter(sample, self.generator_list)
iter_time = time.time() - iter_time
self.last_sample = sample
self.loss_history.append ( [float(loss[1]) for loss in losses] )
if self.write_preview_history:
if self.epoch % 10 == 0:
if self.iter % 10 == 0:
preview = self.get_static_preview()
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.epoch, preview.shape[1], preview.shape[2])
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.iter, preview.shape[1], preview.shape[2])
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite ( str (self.preview_history_path / ('%.6d.jpg' %( self.epoch) )), img )
cv2_imwrite ( str (self.preview_history_path / ('%.6d.jpg' %( self.iter) )), img )
self.epoch += 1
self.iter += 1
if epoch_time >= 10:
#............."Saving...
loss_string = "Training [#{0:06d}][{1:.5s}s]".format ( self.epoch, '{:0.4f}'.format(epoch_time) )
time_str = time.strftime("[%H:%M:%S]")
if iter_time >= 10:
loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, self.iter, '{:0.4f}'.format(iter_time) )
else:
loss_string = "Training [#{0:06d}][{1:04d}ms]".format ( self.epoch, int(epoch_time*1000) )
loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, self.iter, int(iter_time*1000) )
for (loss_name, loss_value) in losses:
loss_string += " %s:%.3f" % (loss_name, loss_value)
return loss_string
def pass_one_epoch(self):
def pass_one_iter(self):
self.last_sample = self.generate_next_sample()
def finalize(self):
nnlib.finalize_all()
def is_first_run(self):
return self.epoch == 0
return self.iter == 0
def is_debug(self):
return self.debug
@ -394,8 +398,8 @@ class ModelBase(object):
def get_batch_size(self):
return self.batch_size
def get_epoch(self):
return self.epoch
def get_iter(self):
return self.iter
def get_loss_history(self):
return self.loss_history
@ -430,7 +434,7 @@ class ModelBase(object):
self.batch_size = d[ keys[-1] ]
@staticmethod
def get_loss_history_preview(loss_history, epoch, w, c):
def get_loss_history_preview(loss_history, iter, w, c):
loss_history = np.array (loss_history.copy())
lh_height = 100
@ -483,7 +487,7 @@ class ModelBase(object):
last_line_t = int((lh_lines-1)*lh_line_height)
last_line_b = int(lh_lines*lh_line_height)
lh_text = 'Epoch: %d' % (epoch) if epoch != 0 else ''
lh_text = 'Iter: %d' % (iter) if iter != 0 else ''
lh_img[last_line_t:last_line_b, 0:w] += image_utils.get_text_image ( (w,last_line_b-last_line_t,c), lh_text, color=[0.8]*c )
return lh_img